400volt.ru

Домашнему электрику
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерение сопротивления изоляции мегаомметром

Измерение сопротивления изоляции мегаомметром

Как пользоваться мегаомметром, измерение сопротивления изоляции мегаомметром

Все мегаомметры в каталоге. Мегаомметр прибор для измерения сопротивления изоляции кабеля, изоляцию обмотки двигателя, диэлектрических материалов приборов. Современные мегаомметры позволяют вычеслять сразу коэффициент абсорбции и поляризации. Коэффициент абсорбции показывает степень увлажнения изоляции кабелей, трансформаторов, электродвигателей. Коэффициент поляризации показывает степень старения изоляции. Работа мегаомметра основана на измерении протекающего тока, при подаче стабильного высокого напряжения. У цифровых мегаомметров переключение диапазонов и определение единиц измерения производятся автоматически. Мегаомметры с испытательным напряжение которое создает ШИМ преобразователь не могут измерять сопротивления изоляции обмоток двигателя, цепи с высокой индуктивностью, например промышленный магнит.

При коэффициенте поляризации менее 1 изоляция проводника изношенная необходимо заменить, при значении от 1 до 2 проводник изношенный, но эксплуатация возможна. При значении более 2 эксплуатация проводника разрешена. Коэффициент абсорбции вычисляется измерением скорости заряда абсорбционной емкости изоляции при приложении испытательного напряжения. Если коэффициент абсорбции меньше 1,3 изоляция считается неудовлетворительной, необходимо сушить изоляцию.

Для работы с мегаомметром необходимо:

  1. выбрать испытательное напряжение в настройках прибора, чем больше испытательное напряжение чем больше максимальное значение сопротивления;
  2. выбрать время измерения. Из-за нестабильности сопротивления требуется проводить измерения не менее 1 минуты.

Клемму «минус», «GUARD», «0 V» необходимо подключать к тому проводнику, который заземлен. Измерения рекомендуется проводить дважды со сменной полярности испытательного напряжения для получения среднего результата. Полярность испытательного напряжения указана на гнёздах мегаомметра. Результаты измерений может выглядеть как на картинке ниже. М инимальное сопротивления изоляции проводки для бытовой сети 0,5 МОм, а для промышленной сети и производственного оборудования 1 МОм.

Для измерения сопротивления изоляции двухжильного кабеля необходимо клеммы плюс и минус мегаомметра подсоединить к проводникам. Если кабель одножильный тогда клеммы плюс и минус мегаомметра подключают к проводнику и экрану соответственно. При измерении сопротивления более 10 ГОм необходимо использовать экранированный измерительный кабель, экран измерительного кабеля подключается в соответствующее гнездо.

Если изоляция кабеля загрязненная и при больших значения сопротивления изоляции более 10 ГОм, для исключения влияния поверхностных токов утечки необходимо использовать схему подключения с тремя измерительными кабелями. Или экраннированным кабелем как у мегаомметра Е6-32, в комплекте не поставляется. К изоляции одного из проводников необходимо намотать колечко из фольги, обжать крокодилом и подключить крокодил к клемме заземления мегаомметра. При измерении сопротивления изоляции обмотки трансформатора, для исключения влияния поверхностных токов утечки так же необходимо использовать схему подключения с тремя измерительными кабелями. Клемма заземления в данном случае подключается к сердечнику трансформатора.

Нормы сопротивления изоляции. Измерения необходимо производить при нормальных климатических условиях при температуре 25±10 °С и влажности воздуха не более 80%. Если в кабеле провода без экрана, то сопротивление изоляции измереяется между жилами проводов. Если провода с экраном в виде оплетки или фольги, то тогда сопротивление изоляции измеряется между жилой и экраном. Испытания проводят при отключеных электроустановках.

Работа с мегаомметром

26 октября 2019

Время на чтение:

Многие начинающие электрики задаются вопросом, как пользоваться мегаомметром и что собой представляет этот измерительный электроприбор. О том, какие параметры имеет аппарат, каков принцип его работы, область применения и другое далее.

Что это такое

Мегаомметр является специальным измерительным прибором, используемым профессиональными электриками, для того чтобы вычислять электросети и электроприборы. Отличается от омметра работой с высоким напряжением. Напряжение генерируется самостоятельным образом встроенным механическим генератором или батареей. Величина его равна 100-2500 вольт. Выпускается в двух вариантах — в виде индукторного и безындукторного аппарата.

Мегаомметр в помощь электрикам

Он является универсальным переносным электродвигательным устройством, который бывает как ручным, цифровым, аналоговым или электронным, так и механическим и высоковольтным.

Обратите внимание! Стоит указать, что первая модель была изобретена с ручкой. Сегодня самыми стильными являются электронные измерительные модели.

Технические характеристики

Современный измерительный мегаомметр состоит из электромеханического генератора, имеющего ручной привод, или из электронного инвертора с частью выпрямителя, который питается от того, что в прибор встроен аккумулятор или у него есть сменные гальванические элементы. Как индикатор используется стрелочный логометр или жки.

Что касается диапазона измерений, есть модели от 0 до 200 кОм. Масса колеблется от 1 до 2,2 килограммов. Габариты примерно такие: длина 210-220, ширина 140-156, а высота — 61-250 миллиметров.

Стоит отметить, что точные параметры у каждого прибора разные из-за отличного внешнего и внутреннего исполнения. В некоторых моделях есть табло со школой и механической стрелкой, где-то имеется аккумуляторная батарея или блок питания.

Технические характеристики цифрового электроприбора Мегом 300

Принцип работы

Работает измерительный аппарат очень просто. Напряжение попадает на испытуемый электросетевой участок, чтобы проверить, как произолированы кабели. В зависимости от того, какая номинальная нагрузка у устройства, используется конкретная энергия. До испытания выбирается прибор, подходящий к сети.

То есть, работа с мегаомметром выполняется на законе Ома. Он подает ток на кабельный участок для проверки изоляции. Показатели того, что утечка происходит, возвращаются на прибор. Согласно этим данным делается вывод о том, нормально ли работает кабель или есть проблемы. При большом значении утечки, изоляция повреждена. Тогда может произойти короткое замыкание. Стоит отметить, что неисправность лучше убрать сразу, поскольку в любой момент может произойти кабельное возгорание при отсутствии работы автоматики контактного отключения.

Правила работы

Мегаомметр — травмоопасный аппарат из-за высокого напряжения. Работать с ним может только тот человек, который имеет знания и опыт.

Начинать работу с мегаомметром можно только обученным людям и знающим технику безопасности. Работа в электрических установках, где напряжение больше 1000 вольт, производится с разрешительной документацией, то есть наряд-допуском. При этом выдача документа для нескольких работ не разрешается. Также выполнение трудовой деятельности при подобном сетевом напряжении разрешается людям, которые имеют третью и четвертую группу электробезопасности.

Обратите внимание! До начала необходимо проверить целостность аппарата. В момент работы с устройством необходимо использовать диэлектрические перчатки и ни в коем случае не прикасаться к токоведущим элементам. После деятельности, необходимо снимать остаток заряда заземлением.

Где используется

Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр. Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики. Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.

Применение в условиях промышленности как основная сфера

Как подключить

Каждая модель устройства имеет свою выходную величину напряжения, по этой причине для эффективного испытания изоляции либо замера ее сопротивления, необходим правильный подбор мегаомметра.

Чтобы проверить кабельную изоляцию, необходимо сформировать случай, при котором на участок энергия будет подана выше номинальной, но в пределе, описанной в техническом документе. К примеру, если напряжение подается в количестве 500, то необходимо немного превысить эту величину.

Длительность измерения сопротивления изоляции мегаомметром, обычно должна быть не более 30 секунд. Это нужно, чтобы точно можно было выявить дефекты, а также исключить их последующее появление при сетевых перепадах.

Основой измерений является подготовка с выполнением и финальным этапом. На каждом этапе происходят свои манипуляции, которые нужны, чтобы достигнуть поставленную цель.

Обратите внимание! Подготавливая работу, нужно понимать действия, изучить электрическую установку в схематичном виде для исключения возможной поломки и обеспечения безопасности.

Делая начало работы, следует осуществить проверку прибора на исправность. Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения.

На финальном этапе восстанавливаются разобранные цепочки, снимаются шунты и закоротки, а также подготавливаются схемы для рабочего режима. Позднее документируются результаты измерений слоя изоляции в проверочном изоляционном акте

Профессиональное подключение мегаомметра по инструкции

Как пользоваться

Чтобы правильно проводить испытания важно сделать правильное выставление измерительных диапазонов и тестовой энергии. Самый простой метод этого выполнения, использовать специальные таблицы с указанием параметров для разных тестируемых объектов.

Важно понимать, что во время тестирования необходимо использование диэлектрических перчаток. Также необходимо убрать посторонних с вывешиванием соответствующих предупреждающих плакатов. Во время подключения щупов, необходимо только касаться тех частей, которые заизолированы. До измерения следует сделать переносной вид заземления для отключения контрольных кабелей. При этом сами измерения нужно проводить при сухой изоляции до превышения допустимых пределов влажности.

Использование аппарата по руководству к эксплуатации как возможность его правильной работы и отсутствия поломок

Как прозвонить кабель

Проверить одножильный кабель можно несколькими манипуляциями, выставив тестовый вид напряжения. Первый щуп должен быть прицеплен на часть жилы, а второй должен быть прицеплен на броню. После этого будет подано напряжение. Если не имеется брони, то необходима земляная жила. При нахождении показаний до 0,5 мОм, значит кабель неизношен и его можно использовать дальше и не заменять.

Обратите внимание! Прозванивая многожильный кабель, нужно осуществлять проверку каждой жили, а из остальных полупроводников сделать сбор единого жгута. Чтобы получить достоверные результаты, необходимо обеспечение хорошего контакта.

Проверка изоляции

Проверка изоляции — еще одна функция измерительного прибора. Изоляция позволяет защитить жилу от соприкосновения с другой жилой. Характеристика изоляционного качества — сопротивление. Это измеряется в омах с производными. Сопротивление является величиной, которая обратна производимости. То есть она может показать возможность непропуска электротока.

Чем меньше изоляция, тем больше возможность нахождение тока пути и распространение из кабеля к токопроводящим поверхностям и материалам. То есть может быть изоляционный кабельный пробой. Важно понимать, что изоляция стареет, ухудшается из-за влажности и механического повреждения. Также ухудшается из-за воздействия агрессивной внешней среды.

Как проверить мегаомметр на исправность

Осуществить проверку мегаомметра на исправность необходимо по следующему способу. К выводам устройства сделать подключение проводов и закоротить выходы. Потом подать энергию и проследить за результатами. Исправный прибор покажет ноль. Потом разъединить и попробовать заново. Во второй раз должна появиться бесконечность. Это показатель — воздушный промежуток.

Неисправности мегаомметра

Неисправности заключаются в отсутствии горения индикаторного табло измерительных результатов в момент включения омметра питания. Также они заключаются в нестабильности измерительных результатов. Причина этих явлений в перегорании предохранителя, неисправности кабеля сетевого питания, ненадежном заземлении и ненадежном контактировании с измерительным объектом.

Неправильная эксплуатация прибора и заводской брак как неисправность

Ремонт мегаомметра

Ремонт заключается в замене предохранителя, устранении неисправности кабельного повреждения, восстановления надежного заземления и достижения надежного контакта для измерительного объекта. Стоит отметить, что техническое обслуживание является лучшей профилактикой для бесперебойной работы. Также оно нужно, чтобы поддержать эксплуатационную надежность и повысить эффективность омметра.

Обратите внимание! В случае обнаружения брака, следует сделать замену оборудования или обратиться в сервисный центр для оказания профессиональной помощи.

Что следует выполнить после окончания измерения мегаомметром

Сразу после выполнения измерений, необходимо сделать три главные вещи. Нужно внесение в протокол измерительных результатов, приведения в порядок рабочего места с инструментами и приспособлениями, а дальше снятие с токоведущих частей остаточного заряда кратковременным заземлением.

Важно отметить, что по требованию охраны труда, в конце работы должна быть отключена измерительная аппаратура, разряжена цепь, которая находится под мегаомметровым воздействием. Далее нужно сделать отсоединение приборных проводов от тока, записать измерительные результаты в ведомость. Потом сообщить лицу, который ответственен за производственные работы. Обо всех недостатках, которые были замечены в процессе деятельности, нужно доложить, чтобы были приняты меры.

Правильное отключение как залог сохранения работоспособности прибора

В целом, мегаомметр — измерительный прибор, позволяющий изучить показания сопротивления электросетевых и приборных обмоток. Отличается от других аппаратов работой на высоком напряжении. Напряжение генерируется самим устройством благодаря встроенной батареи. Область применения его обширна: обычно используется во всех видах промышленности, где есть высокое напряжение. Использовать несложно, главное — изучить инструкцию по применению мегаомметра эс0202 2г и соблюдать технику безопасности. В противном случае, возможна поломка и, как следствие, необходимость ремонта.

Читать еще:  Кабель СИП

Как пользоваться мегаомметром для измерения сопротивления изоляции кабеля?

Чтобы измерить значение сопротивления, а также выявить дефекты кабелей и проводок электрических сетей, используют специально разработанное для этого приспособление мегаомметр.

В названии аппарата ясно распознаются три слова:

“Мега”, ” Ом”, и ”Метр”, где первое слово подразумевает значение измеряемой величины, второе — единицу измерения и третье производное от слова “измерить”.

В основе рабочего процесса мегаомметра лежат принципы закона Ома, касающиеся участков электрической цепи, поэтому любая модификация прибора содержит во внутренней части корпуса:

  • измерительную систему тока (амперметр);
  • набор выходных клемм;
  • генератор постоянного напряжения.

Конструктивные особенности генераторов напряжения могут изменяться в довольно широких границах. В основу их производства положены простые ручные динамо-машины, которые использовались раньше. Современные генераторы оснащены встроенными или внешними источниками питания.

Показатели выходной мощности и напряжения генератора могут варьироваться в пределах нескольких интервалов, а также иметь единственную, фиксированную величину.

Соединительные провода с одной стороны подключают к клеммам мегаомметра, а с другой фиксируют в измеряемой цепи при помощи “крокодилов”. Это специальные приспособления, предназначенные для более надежного соединения.

С помощью амперметра, который встроен внутри агрегата, измеряют показатели проходящего по цепи тока.

Обратите внимание! с известным и проградуированным напряжением генератора калибруются также единицы сопротивления, то есть на шкале, расположенной на измерительной головке, показаны мегаомы, килоомы или и те и другие вместе.

На шкале одного из самых надежных проверенных аналоговых мегаомметров, выпущенных около пятидесяти лет назад М4100/5, расположено две шкалы, что позволяет выполнить замер на двух границах. Новые технологии отображают показания сопротивления более наглядно. На цифровой дисплей выводится уже обработанный цифровой сигнал.

Стрелочный мегаомметр и его устройство

Упрощенная электрическая схема, характерная для аналоговых приборов оснащена такими составными частями:

  • генератором постоянного тока;
  • измерительной головкой, которая состоит из двух взаимодействующих рамок (рабочая и противодействующая);
  • тумблером-переключателем между пределами измерений, который позволяет регулировать работу различных резисторных цепочек, предназначенных для коррекции выходного напряжения и режимов работоспособности головки;
  • токоограничивающего резистора.

В свою очередь диэлектрический герметичный прочный корпус данного агрегата оснащен:

  • ручкой для комфорта в транспортировке;
  • складной портативной рукояткой генератора, вращая которую вырабатывают напряжение;
  • рычагом, с помощь которого переключают режимы измерения;
  • выходными клеммами, предназначенными для работоспособности всей схемы (к клеммам подключаются соединительные провода).

У большинства моделей мегаомметров имеются три выходные клеммы для подключения. Каждая из них имеет название: земля (З), линия (Л) и экран (Э).

З и Л предназначены для замеров сопротивления изоляции. Э – для того чтобы ликвидировать влияние токовых потерь в случае проведения замера в области двух параллельно проходящих жил кабелей.

В комплектацию прибора входит специальный измерительный провод с характерной конструкцией и экранированным концом, оборудованным двумя клеммами. На одной из них есть маркировка в виде буквы “Э”. Что это значит? Это значит: что ее следует подключить к соответствующей клемме, расположенной на мегаомметре.

Для мегаомметров, основанных на работе внешней сети, характерен тот же принцип работы, ручка здесь уже не крутится, то есть для того чтобы выдать напряжение для испытываемой схемы следует просто удерживать специально предназначенную для этого кнопку. Прибор, способный выдавать не одну комбинацию напряжения, оснащен соответственно несколькими кнопками. Их может быть две, три… даже несколько наборов сочетаний. Такие мегаомметры имеют более сложное внутреннее устройство.

Обратите внимание! Приборы обладают повышенным напряжением, поэтому при их использовании следует соблюдать технику безопасности.

Халатное отношение в работе с высоким уровнем опасности недопустимо. Так как же правильно пользоваться мегаомметром? Из всего вышеописанного вывод напрашивается сам собой:

Согласно мерам безопасности при работе с мегаомметром возможность производить замеры получает только специально обученный и подготовленный человек. Его специализация должна позволять проводить ремонтные работы электроустановок, находящихся под напряжением.

При замере испытуемой схемы соединительные провода и клеммы обладают повышенным напряжением, поэтому работа с ними обязывает пользоваться специальными щупами. Они устанавливаются в области измерительных проводов, поверхность которых усиленно изолирована.

Действие остаточного заряда

Работающий генератор мегаомметра выдает напряжение, поэтому контур земли образует разные значения потенциалов, благодаря которым создается подобие ёмкости, обладающей определенным зарядом. После проведения измерений в проводе остается какая-то часть ёмкостного заряда. Как только человек прикасается к данному участку, электрическая травма обеспечена, поэтому постоянное использование дополнительных мер безопасности не будет лишним, а именно:

  • переносное заземление;
  • изолированная рукоятка;
  • прежде чем подключить прибор к испытуемой схеме следует проверить наличие в ней напряжения, а также остаточного заряда с помощью вольтметра.

Как обеспечить безопасность работы с мегаомметром

Работа выполняется исключительно с помощью исправных мегаомметров (проверен и испытан в условиях специально предназначенной для этого метрологической лаборатории). Поверка позволяет владельцу агрегата обладать специальным сертификатом, который дает ограниченное во времени право на проведение работ, то есть до определенного срока годности. После поверки на корпус прибора специалист наносит клеймо, свидетельствующее о проведенной контрольной поверке. Клеймо содержит дату и номер проверяющего. В обязанности владельца мегаомметра входит соблюдение целостности клейма, так как именно оно дает право на проведение последующих измерений. Нет клейма, значит: прибор не исправен!

При выполнении нескольких замеров подряд в десятижильном кабеле следует постоянно использовать переносное заземление, а также снимать остаточный заряд после каждого замера. Быстрая и безопасная работа с мегаомметром обеспечивается путем соединения одного конца заземляющего проводника с контуром заземления до завершения всех работ. Второй конец проводника крепят на изоляционную штангу, которая предназначена для удобства многоразового накладывания заземления, чтобы безопасно снять остаточный заряд.

Как подключить мегаомметр?

Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.

Измерение сопротивления мегаомметром

Мегаомметр предназначен для измерения больших сопротивлений, в частности сопротивления изоляции. Источником питания в таких приборах служит генератор переменного тока с ручным приводом или специальный преобразователь. В отличие от других омметров на выходе мегаомметра в зависимости от модификации прибора или предела измерения создается напряжение 100, 500, 1000 или 2500 В.

Приведем некоторые сведения о сопротивлении изоляции и особенностях ее измерения. Как известно, электроизоляционные материалы обладают некоторой проводимостью и поэтому под действием приложенного напряжения U через изоляцию проходит ток утечки I с, установившееся значение которого и определяет сопротивление изоляции Rи = U/Iс.

На рис. 1 приведены графики изменения сопротивления изоляции Rи и тока утечки I с от времени, прошедшего после приложения напряжения. Ток устанавливается не сразу, а через некоторый промежуток времени, поэтому отсчитывать показания прибора необходимо не ранее чем 60 с.

Рис. 1. Графики изменения сопротивления изоляции и тока утечки от времени

Для измерений необходимо выбрать мегаомметр по пределу измерения и рабочему напряжению. Предел измерения мегаомметра должен быть таким, чтобы ожидаемое сопротивление изоляции находилось в правой половине его шкалы (при нуле слева) или в левой половине (при нуле справа). Напряжение мегаомметра выбирают в зависимости от напряжения сети, в которой определяют сопротивление изоляции.

На рис. 2 приведена схема подключения мегаомметра при измерении сопротивления изоляции провода А относительно корпуса. Для этого вывод мегаомметра З («Земля») подсоединяют к экрану кабеля или заземляющему проводнику, а затем вывод мегаомметра Л («Линия») присоединяют к проводу.

Рис. 2. Схема подключения мегаомметра

В данной схеме прибор измеряет не сопротивление изоляции RA жилы А относительно земли, а эквивалентное сопротивление RЭ состоящее из двух параллельно включенных ветвей: сопротивления RA и последовательно включенных сопротивлений R B и RAB. Здесь RB — сопротивление изоляции провода В относительно земли, RAB — сопротивление изоляции между проводами А и В. Поэтому по результату одного измерения нельзя определить значение RA, но можно утверждать, что R.

Если в рассматриваемой схеме необходимо узнать сопротивление RA, то следует произвести три измерения. При первом измерении заземляют провод В, а мегаомметр подключают к проводу А. В этом случае измеряют сопротивление двух параллельных сопротивлений RА и RAB.

При замыкании проводов А и В между собой и подключении к ним прибора мегаомметр покажет сопротивление другой пары сопротивлений RA и RB. И наконец, при заземлении провода А в результате измерения будут учтены сопротивления RB и RA B .

Математически результаты измерений и сопротивления RA, RB, R AB связаны между собой следующими соотношениями:

Если показания мегаомметра во всех трех случаях одинаковы, то RA = RB = RAB= 2RЭ1 = 2RЭ3 = 2RЭ3

Когда показания мегаомметра разные, то для нахождения RA, R B , Rab необходимо решить систему уравнений, подставив в нее значения RЭ т. е. результаты каждого из трех измерений.

Учитывая изложенное, сопротивления изоляции обмоток электрических машин и трансформаторов измеряют поочередно для каждой из обмоток в отдельности, соединив при этом другие обмотки с корпусом машины или трансформатора. Это позволяет найти эквивалентное сопротивление изоляции данной обмотки, в которое входят ее сопротивления изоляции относительно корпуса и других обмоток. При измерениях обмотка, сопротивление изоляции которой измеряют, не должна иметь гальванической связи с другими обмотками.

Перед началом измерений мегаомметр необходимо проверить. Для этого выводы прибора закорачивают и вращают его рукоятку (при ручном приводе) или нажимают кнопку в приборе со статическим преобразователем, пока стрелка прибора не установится против деления шкалы с цифрой 0.

После этого снимают закорачивающую перемычку и продолжают вращать рукоятку привода (нажимать кнопку). Стрелка прибора должна установиться против деления со. Если прибор исправен, то им можно производить измерения. После измерения сопротивления изоляции необходимо кратковременно заземлить точку, к которой подключался провод от мегаомметра, для того, чтобы снять заряд, накопившийся в изоляции.

Документы

1. Цель проведения измерения.

Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

2. Меры безопасности.

2.1 Технические мероприятия.

До начала и в процессе измерений необходимо выполнять технические мероприятия согласно “Правилам техники безопасности” (ПТБ). При работе с мегомметром необходимо руководствоваться пунктами Б 3.7.17-Б 3.7.22 ПТБ.

2.2 Организационные мероприятия.

Измерения мегаомметром разрешается выполнять в установках напряжением выше 1000В двум лицам, одно которых должно иметь группу по электробезопасности не ниже IV. Работы выполняются по наряду. В установках напряжением до 1000В измерения выполняют два лица, одно из которых должно иметь группу не ниже III. Работы выполняются, в порядке текущей эксплуатации с последующей записью в оперативный журнал.

3. Нормируемые величины.

Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов “Правил технической эксплуатации электроустановок потребителей”. Как правило, сопротивление изоляции систем БССН и ФССН измеренное мегаомметром на 250 В должно быть не менее 0,25 Мом, силовых цепей до 500 В (кроме систем БССН и ФССН) измеренное мегаомметром на 500 В должно быть не менее 0,5 МОм, а вторичных цепей — не менее 1МОм. Сопротивление изоляции силовых цепей выше 500 В измеренное мегаомметром на 1000 В должно быть не менее 1.0 МОм, (ГОСТ Р50571.16-99). Сопротивление изоляции электропроводок, в том числе и осветительных сетей измеренное мегаомметром на 1000 В должно быть не менее 0.5 МОм, (ПТЭЭП п. 28.1)

4.
Применяемые приборы.

Для измерения сопротивления изоляции применяются мегаомметры типов: MI 3102H (на напряжение 100 В, 250 В, 500 В 1000 В и 2500 В) и, Е6-24 (на напряжение 500 В 1000 В и 2500 В). Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах и гигаомах.

5. Измерение сопротивления изоляции электрооборудования.

5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

При измерении сопротивления изоляции необходимо учитывать следующее:

— измерение сопротивления изоляции кабелей (за ис­ключением кабелей бронированных) сечением до 16 мм2 производится мегаомметром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение со­противления изоляции проводов всех сечений производит­ся мегаометром на 1000 В.

При этом необходимо производить следующие замеры:

Читать еще:  Электрический ввод в частный дом

— на 2 — и 3-проводных линиях — три замера: L-N, N-РЕ, L-РЕ;

— на 4-проводных линиях — 4 замера: L1-L2L3РЕN, L2 — LЗL1РЕN, LЗ-L1L2РЕN, РЕN-L1L2L3, или 6 замеров: L1-L2, L2-L3,
L1-L3, L1-РЕN, L2-РЕN, LЗ-РЕN— на 5-проводных линиях — 5 замеров: L1—L2L3 NРЕ, L2-L1L3NРЕ, LЗ-L1L2РЕ, N-L1L2L3РЕ, РЕ-NL1L2L3, или

10 замеров: L1-L2, L2-L3, L1-L3, L1-N, L2-N, L3-N, L1-РЕ, L2-РЕ, LЗ-РЕ, N-РЕ.

Допускается не проводить измерения сопротивления изоляции в осветительных сетях, находящихся в эксплуа­тации, если это требует значительных работ по демонтажу схемы, в этом случае, не реже 1 раза в год, требуется вы­полнять визуальный контроль совместно с проверкой надежности срабатывания средств защиты от сверхтоков (оп­ределение токов однофазных замыканий в соответствии с п. 1.7.79 ПУЭ).

Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 0,5 МОм, то заклю­чение об их пригодности делается после испытания их пе­ременным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.

5.2. Измерение сопротивления изоляции силового элекрооборудования

Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от темпе­ратуры. Замеры следует производить при температуре изо­ляции не ниже +5°С кроме случаев, оговоренных специ­альными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния вла­ги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обус­ловленных разностью температур, при которых проводи­лись измерения, следует откорректировать эти результаты по указаниям изготовителя.

Степень увлажненности изоляции характеризуется ко­эффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложе­ния напряжение мегаомметра (R60) к измереннму сопро­тивлению изоляции через 15 секунд (R15),

Кабс = R60/R15

При измерении сопротивления изоляции силовых транс­форматоров используются мегаомметры с выходным на­пряжением 2500 В.

Измерения проводятся между каждой обмоткой и кор­пусом и между обмотками трансформатора.

При этом R60, должно быть приведено к результатам за­водских испытаний в зависимости от разности темпера­тур, при которых проводились испытания.

Значение коэффициента абсорбции должно отличать­ся (в сторону уменьшения) от заводских данных не более, чем на 20%, а его величина должна быть не ниже 1,3 при температуре 10—30°С. При невыполнении этих условий трансформатор подлежит сушке.

Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в при­ложении 3 ПТЭЭП, таблица 9 а для установок, вводимых в эксплуатацию, — в гл. 1.8. ПУЭ, таблица 8. Сопротивле­ние изоляции ручных электрических машин измеряется относительно корпуса и наружных металлических частей при включенном выключателе.

Корпус электроинструмента и соединенные с ним де­тали, выполненные из диэлектрического материала, на вре­мя испытания должны быть обернуты металлической фоль­гой, соединенной с контуром заземления.

Если сопротивление изоляции при этом будет не менее 10 МОм, то испытание изоляции повышенным напряже­нием может быть заменено измерением ее сопротивления мегаомметром с выходным напряжением 2500 В в течение 1 минуты.

У переносных трансформаторов измеряется сопротив­ление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях сопротивления изоляции первичной обмотки, вторичная должна быть зам­кнута и соединена с корпусом.

Сопротивление изоляции автоматических выключате­лей и УЗО производятся:

1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.

2. Между каждым разноименным полюсом и соединен­ными между собой оставшимися полюсами при зам­кнутом состоянии выключателя или УЗО.

3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р50345-99) и УЗО при измерениях по п.п. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 — не менее 5 Мом.

Для остальных автоматических выключателей (ГОСТ Р50030.2-99) во всех случаях сопротивление изоляции дол­жно быть не менее 0,5 МОм.

6. Измерение сопротивления изоляции прибором Е6-24

6.1.
Внешний вид прибора показан на рисунке 1

1, 2, 3 — гнезда для подключения кабелей

5 — индикатор единиц измерения (сверху вниз соответственно:

6 — индикатор испытательных напряжений (слева направо соответственно: 500В, 1000В, 2500В)

7 — индикатор заряда батареи

8 — переключатель вкл и выкл состояния прибора

9 — кнопка установки испытательного напряжения

10 — кнопка вывода результатов из памяти

11 — кнопка измерения сопротивления

6.2.
Перед началом измерений необходимо убедится, что на испытываемом объекте нет напряжения, тщательно очистить изоляцию вблизи точки замера от пыли и грязи и на 2-3 мин. Заземлить объект для снятия с него возможных остаточных зарядов. После окончания измерений испытываемый объект необходимо разрядить кратковременным заземлением.

Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (обычно не меньше 100 МОм).

Перед пользованием мегаомметр следует подвергнуть контрольной проверке, которая заключается в проверке показания по шкале при разомкнутых и короткозамкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы “бесконечность”, во втором — у нуля.

Для того, чтобы на показания мегаомметра не оказывали влияния токи утечки по поверхности изоляции, особенно при проведении измерении в сырую погоду, мегомметр подключают к измеряемому объекту с использованием зажима Э (экран) мегаомметра. При таком подключении токи утечки по поверхности изоляции отводятся в землю, минуя обмотку прибора.

Значение сопротивления изоляции в большей степени зависит от температуры. Сопротивление изоляции следует измерять при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции.

При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “+” рекомендуется подключать к токоведущей части испытываемой установки, а зажим “-” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не

соединенных с землей, подключение зажимов мегаомметра может быть любым.

Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.

Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.

За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на индикатору мегаомметра через 60 с, которое отсчитывается автоматически.

Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены. При наличие на объекте переменного напряжения мегаомметр определит его автоматически. При отсутствии напряжения можно начинать проводить измерения.

6.3. Переключение значения испытательного напряжения 500 В, 1000 В и 2500 В производится кратковременным нажатием кнопки «UR».

6.4. Для проведения измерения необходимо нажать и удерживать кнопку «RX». После отпускания кнопки процесс измерения прекратится. Двойное нажатие кнопки «RX» приводит к её захвату, и процесс измерения будет происходить в течение заданного интервала времени без её удержания (от 1 до 10 минут), выставить который можно кнопками UR и МRх/К после включения мегаомметра при нажатой кнопке «RX». При необходимости досрочного отключения процесса измерения следует повторно нажать кнопку «RX».

6.5. Загорание на индикаторе символа «П» (переполнение) указывает что сопротивление объекта измерения превышает предел показания прибора 99,9 Гом. Так же индикация «П» может появляться при переходных процессах, поэтому в таком случае следует продолжать измерение в течении ещё 10 секунд.

6.6. Отстыковку кабелей от объекта следует проводить не ранее 10 секунд после окончания подачи испытательного напряжения.

7.1. Порядок проведения измерения сопротивления изоляции

Шаг 1 Посредством поворотного переключателя выберите функцию Изоляция.

С помощью кнопок и осуществляется выбор между функциями «R ISO» и «ДИАГНОСТИКА». Выберите опцию «R ISO». Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2 Установите значения следующих параметров и пределов измерения:

Номинальное измерительное напряжение,

Минимальное предельно допустимое значение сопротивления.

Шаг 3 Подключите измерительный кабель к испытываемому объекту. Для проведения измерения сопротивления изоляции следуйте схеме подключения, показанной на рисунке 2. При необходимости обратитесь к меню помощи. Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должны использоваться специальные измерительные провода, так как испытательный сигнал подается на другие измерительные клеммы, чем при измерениях при UN≤ 1 кВ! Стандартный трехпроводный измерительный кабель, кабель с евро — вилкой и щупы «commander» могут использоваться только при измерениях сопротивления при напряжении UN≤ 1 кВ!


Рисунок.2: Подключение 3-проводного измерительного кабеля и щупа с

наконечником (UN ≤1 кВ)

Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должен использоваться двухпроводный 2,5 кВ-й измерительный кабель. Подключение в соответствие со схемой подключения, показанной на рисунке 3


Рисунок 3: Подключение двухпроводного 2,5 кВ-го измерительного кабеля (UN =2,5 кВ)

Шаг 4 Перед началом измерений проверьте отображаемые предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите и удерживайте кнопку ТEST, пока результат не стабилизируется. Во время измерений на дисплее отображается фактическое значение сопротивления. После того, как кнопка TEST отпущена, отображается последнее измеренное значение, сопровождающееся оценкой результата в виде «соответствует / не соответствует» (если применяется).

R… … … … Сопротивление изоляции,

Um… … … Измерительное напряжение.

Сохраните результаты измерений для дальнейшего документирования.

7.2. Классификация результатов измерения сопротивления изоляции при сохранении

При сохранении, после нажатия кнопки Память, доступны десять подфункций сопротивления изоляции:

Процедура измерения сопротивления изоляции протекает одинаково, в независимости от того, какая подфункция выбрана. Однако важно выбирать соответствующую подфункцию, чтобы в дальнейшем правильно классифицировать результаты измерений для их корректного занесения в протоколы измерений.

8. Оформление результатов измерений.

Результаты измерения сопротивления изоляции проводов, кабелей, обмоток машин и аппаратов записываются в протокол, заключительная часть которого характеризует качество изоляции. Оформленный протокол прилагается к отчету по наладке электрооборудования.

Методика измерения сопротивления изоляции мегаомметром

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ПРОВЕДЕНИЮ

ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ

Общие положения

1.1 Настоящие методические указания определяют порядок оценки состояния изоляции электропроводок, электрооборудования (комплектных низковольтных устройств: ВРУ, щитков распределительных) на соответствие техническим нормам, установленным в нормативно-технических документах.

1.2 Объемы и сроки проведения различных видов испытаний, допустимые значения характеристик испытываемого оборудования, устанавливаются на основании РД 34.45-51.300-97, правил технической эксплуатации электроустановок потребителей и утвержденных графиков.

1.3 Знание настоящих методических указаний обязательно для следующих работников Службы изоляции и испытаний и измерений: начальник, инженер, электромонтёр по испытаниям и измерениям

Нормативные ссылки

В настоящих методических указаниях использованы ссылки на следующие документы:

ÿ Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М-016-2001 РД 153-34.0-03.150-00;

ÿ Объем и нормы испытаний электрооборудования РД 34.45-51.300-97;

ÿ Инструкция по применению и испытанию средств защиты, используемых в электроустановках. СО 153-34.03.603-2003;

ÿ Правила технической эксплуатации электроустановок потребителей. Утверждены Приказом Министерства энергетики Российской Федерации от 13.01.2003, № 6;

ÿ Правила технической эксплуатации электрических станций и сетей Российской Федерации: Утверждены Приказом Министерства энергетики Российской Федерации от 19 июня 2003, № 229;

ÿ Правила устройства электроустановок – издание 6-е;

ÿ Правила устройства электроустановок – издание 7-е.

Методика измерения сопротивления изоляции мегаомметром

4.1 Объемы и сроки проведения различных видов испытаний, допустимые значения характеристик испытываемого оборудования, должны устанавливаться на основании действующих «Объема и норм испытаний электрооборудования, РД 34.45-51.300-97», нормами ПТЭЭП и таблицей 61А стандарта ГОСТ Р 50571.16-99.

4.2 Перед проведением измерения производиться внешний осмотр контролируемого оборудования на наличие видимых дефектов изоляции, проверка надежности крепления электроприборов и электропроводки, наличие защиты от механических повреждений.

4.3 Измерения сопротивления изоляции должны производиться согласно п. 612.3 ГОСТ Р 50571.16-99 между каждым проводом и землей, а также между каждыми двумя проводами.

4.4 Измерения должны производиться при отсоединенных электроприборах, при снятых предохранителях и вывернутых лампах.

4.5 Если цепь имеет электронные приборы, то должно быть сделано только измерение сопротивления изоляции между фазными и нейтральными проводниками, соединенными вместе, и землей. Эта мера предосторожности необходима, т.к. выполнение испытаний без соединения токоведущих проводников может вызвать повреждение электронных приборов.

Читать еще:  Расшифровка маркировки кабеля, провода

4.6 При измерении сопротивления изоляции необходимо учитывать следующее:

ÿ измерение сопротивления изоляции кабелей (за исключением бронированных кабелей) сечением до 16 мм² производится мегаометром на 1000 В, а выше 16 мм² и бронированных — мегаометром на 2500 В;

ÿ измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.

При этом необходимо производить следующие замеры:

ÿ на 2- и 3-проводных линиях – три замера: L – N, N – PE, L – PE;

ÿ на 4-проводных линиях – 4 замера: L1 – (L2+L3+PEN), L2 – (L3+L1+PEN), L3 – (L1+L2+PEN), PEN – (L1+L2+L3);

ÿ на 5-проводных линиях – 5 замеров: L1 – (L2+L3+NPE), L2 – (L1+L3+NPE), L3 – (L1+L2+N+PE), N – (L1+L2+L3+PE), PE-(N+L1+L2+L3).

4.7 Замеры сопротивления изоляции электрических машин и аппаратов следует производить при температуре изоляции не ниже + 5 ºС кроме случаев, оговоренных специальными инструкциями.

4.8 Сопротивление изоляции ручных электрических машин измеряется относительно корпуса и наружных металлических частей при включенном выключателе.

4.9 Сопротивление изоляции автоматических выключателей и УЗО производится:

ÿ между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.

ÿ между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО.

ÿ между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

4.10 За сопротивление изоляции принимается 60-секундное значение сопротивления R60, зафиксированное на шкале мегомметра через 60 секунд. Причем отсчет времени надо производить после достижения нормальной частоты вращения генератора (для мегаомметров типа МРО).

4.11 Схемы измерения сопротивления изоляции приведены на рисунках 1, 2.

Рис.1. Схема измерения сопротивления изоляции шин и изоляторов.

Рис. 2. Схема измерения сопротивления изоляции кабельной линии.

4.12 Значения сопротивления изоляции электроустановок станций и сетей напряжением до 1000 В должны быть не менее приведенных в табл. 1.

4.13 Значения сопротивления изоляции электроустановок потребителей напряжением до 1000 В должны быть не менее приведенных в табл. 2.

4.14 Значения сопротивления изоляции отдельных видов оборудования приведены в соответствующих методиках испытания.

Таблица 1

Наименование элементаНапряжение мегаомметра, ВНаименьшее допустимое значение сопротивления изоляции, МОм
1.Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях)1000-2500
2.Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей 1)1000-2500
3.Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения машин постоянного тока, присоединенные к силовым цепям1000-2500
4.Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже 2)0,5
5.Электропроводки, в том числе осветительные сети 3)0,5
6.Распределительные устройства, 4) щиты и токопроводы1000-25000,5

1) Измерение производится со всеми присоединенными аппаратами (катушки приводов, контакторы, пускатели, автоматические выключатели, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т. п.).

2) Должны быть приняты меры для предотвращения повреждения устройств, в особенности, микроэлектронных и полупроводниковых элементов.

3) Сопротивление изоляции измеряется между каждым проводом и землей, а также между каждыми двумя проводами.

4) Измеряется сопротивление изоляции каждой секции распределительного устройства.

Измерение сопротивления изоляции мегаомметром

Эффективность энергоснабжения и безопасность эксплуатации кабельных магистралей в значительной степени зависят от состояния внешней изоляционной оболочки. При нарушении целостности защитного экрана токопроводящие линии подвергаются угрозе разрушения, что может привести к отказу в их работе.

Согласно действующим в нашей стране электротехническим стандартам (ПУЭ в частности), все находящиеся в эксплуатации проводные линии и кабели должны периодически проходить проверку состояния их защитной изоляции.

Контроль сопротивления

Проверка изоляции кабельной продукции осуществляется путём измерения её сопротивления специально разработанным для этих целей прибором (мегаомметром).

Прежде чем приступить к работе с этим инструментом, необходимо ознакомиться с причинами ухудшения состояния кабельной изоляции, которые проявляются обычно в следующем:

  • Непостоянство напряжения в линиях энергоснабжения;
  • Разрушающее действие солнечного УФ излучения (для объектов, прокладываемых открыто);
  • Резкие колебания температуры;
  • Воздействие агрессивных сред (при скрытой прокладке в грунте).

Независимо от состояния защитной оболочки кабеля, измерение сопротивления изоляции мегаомметром проводится с определённой периодичностью, определяемой действующими нормативами. Результаты проверочных мероприятий с известной точностью позволяют определить причины нарушения изолирующей оболочки, а при определённых условиях – обнаружить повреждённые участки кабеля.

При испытаниях следует руководствоваться действующими методиками измерений, учитывающими условия их проведения, а также основными приёмами работы с измерительным оборудованием. Кроме того, в методических указаниях оговариваются параметры испытательного режима мегаомметра (величины номинального тока, подающегося в контролируемый кабель в частности).

Условия проведения испытаний

Требования к окружению и прибору

Проверка сопротивления кабельных оболочек должна проводиться в закрытых помещениях, температура воздуха в которых не менее +15-+35 °С. Одновременно с этим влажность внутри здания не должна превышать 80-ти процентов.

Эти требования определяются общими положениями нормативных актов и в каждом конкретном случае могут иметь несколько отличных от этих значения. Параметр, измеряемый в процессе проведения испытаний (сопротивление утечки), может быть определён несколькими способами. Но в любом случае его измеренное значение должно значительно превышать нормируемый показатель (не менее чем в 20 раз).

Определённые требования предъявляются и к измерительному прибору (мегаомметру), а именно:

  • Необходимо периодически проверять исправность этих аппаратов, а также наличие подтверждающих их работоспособность документов;
  • Питающие элементы прибора (аккумуляторы) следует поддерживать в состоянии полной зарядки;

Обратите внимание! Этот пункт не относится к образцам мегаомметров, оснащённых встроенным генератором высокого напряжения.

  • Точность снятия показаний прибором для измерения сопротивления изоляции должна быть подтверждена паспортной отметкой Госстандарта.

Добавим к этому, что испытательные напряжения мегаомметра могут иметь следующие дискретные значения: 500, 1000 и 2500 Вольт. Выбрав одну из этих величин, можно будет проверять кабель определённого типа и мощности. Так, диапазон до 1000 Вольт обычно используется при испытании кабельной оплётки, сечение которой не превышает 16 мм².

Требования к объекту испытаний и персоналу

Основное условие, которое должно быть соблюдено перед началом измерений, – отсутствие в исследуемой линии питающих напряжений, способных воздействовать на испытательное оборудование и на работающего с ним человека.

Далее любая кабельная продукция подвергается испытанию на прочность ещё задолго до того, как организуется её проверка на конкретном объекте. Первый раз её тестирование организуется при выпуске с конвейера промышленного предприятия, а второй – перед запуском данного объекта в эксплуатацию и подключением к линии энергоснабжения.

Из этого следует, что перед тем, как измерить сопротивление изоляции кабельных линий на данном объекте, оператор имеет все необходимые данные по её состоянию на момент последней проверки. Ему достаточно сравнить полученные результаты со снятыми ранее показаниями (последние фиксируются в паспорте на данную продукцию).

Важно! Кабельные линии, работающие в цепях с напряжением менее 60 Вольт, проверять повышенным напряжением не допускается.

Что касается человеческого фактора, то заниматься этой работой могут только лица, имеющие специальный допуск к работам с повышенным напряжением. К ним могут быть отнесены специалисты из состава персонала бригад, постоянно занимающиеся ремонтом электрооборудования. Все эти люди должны иметь соответствующие документы, удостоверяющие уровень их подготовки и профессионализма.

Порядок измерения

Суть проверки изоляции на прочность состоит в измерении её сопротивления точно таким же образом, как проверяются обычные резисторы. Однако в этом случае её проводимость контролируется по отношению к другой части, на которую возможна утечка (это может быть земля, второй фазный провод или корпус аппаратуры).

При проверке качества изоляции принят следующий порядок проведения испытаний:

  • Сначала нужно «прозвонить» собственные соединительные провода, сопротивление которых не должно быть более погрешности измерений;
  • Затем посредством имеющегося на приборе центрального указателя устанавливается требуемый диапазон;

Дополнительная информация. В том случае, когда порядок измеряемой величины неизвестен, рекомендуется выбирать наибольший предел. Так удаётся уберечь прибор от перегрузок и угрозы выхода из строя.

  • После этого необходимо ещё раз убедиться том, что напряжение с исследуемого объекта полностью снято;
  • Также следует закоротить всю подключённую к линии проводку, имеющую пониженные изоляционные характеристики («слабую» изоляцию);
  • В соответствии с требованиями ПУЭ, на время подсоединения «концов» прибора к исследуемой цепи она заземляется с помощью прикладываемых к комплекту прибора металлических штырей;
  • Подсоединив один из концов к центральной жиле кабеля, а другой – к любому имеющемуся на объекте «земляному» проводу, можно удалить временное заземление и перейти непосредственно к измерениям;
  • Для этого следует начать вращать ручку индуктора, вырабатывающего высокое напряжение и подающего его на измеряемую цепь. Скорость вращения должна быть не менее 120 оборотов минуту; для получения корректного показания индуктор должен работать не менее 60 секунд;
  • Во время вращения ручки прибора по его шкале можно считать требуемое показание, которое удаётся замерить лишь после окончательного успокоения колеблющейся стрелки.

Обратите внимание! При работе с сетевыми приборами для выработки испытательного воздействия достаточно нажать кнопку «Высокое напряжение».

По окончании измерений на объектах с большой собственной емкостью (это касается протяженных кабельных линий) перед отсоединением измерительных концов следует снять накопленный заряд наложением временного заземления.

Категорически запрещено работать с высоковольтным прибором на кабельных трассах, которые хотя бы в малой своей части располагались вблизи линии, находящейся под высоким напряжением. Этот запрет также распространяется на испытания воздушных линий электропередач во время грозы.

Оценка результатов испытаний и их периодичность

Значение контролируемых параметров определяется особенностью исследуемого объекта и его функциональным назначением. Согласно требованиям ПУЭ, сопротивление изоляции для низковольтных (до 0,4 кВ) кабельных линий и проводки электродвигателей не должно быть менее 0,5 МОм.

Тот же параметр для высоковольтного оборудования (более 1000 Вольт) составляет 1 Мом, а для воздушных кабельных линий он не может быть менее 10-ти Мом. Для сравнительной оценки состояния изоляции обычных кабельных трасс можно воспользоваться приводимой ниже таблицей.

Оценка состояния изоляции

Указанные величины нормируемых показателей справедливы для любых погодных условий. Периодичность проведения испытательных процедур определяется действующими нормативами и зависит от характеристик и состояния обследуемого объекта. Все вопросы, касающиеся самих испытаний (предельные напряжения, порядок и сроки проведения измерений), а также оценки их конечных результатов подробно рассмотрены в ПТЭЭП.

Согласно этим нормативам, качество изоляции кабелей осветительного, кранового и лифтового оборудования должно проверяться не реже одного раза в год. Те же процедуры для переносных сварочных агрегатов и электродвигателей полагается организовывать каждые полгода.

Любые нарушения определённой нормативами периодичности проверки могут привести к нарушению нормального режима работы кабельных или проводных линий, и, как следствие, вызвать повреждение подключённого к ним оборудования.

ТБ и документирование

В части соблюдения правил безопасности при обращении с высоковольтным измерительным оборудованием необходимо заострить внимание на следующих важных моментах:

  • Запрещено начинать любые испытательные работы, если нет полной уверенности в том, что с объекта полностью снято напряжение;
  • Перед началом измерительных операций следует произвести его осмотр и убедиться в отсутствии рабочего персонала на линиях, соединённых с данным участком кабеля;
  • Вдоль всей кабельной трассы, подвергшейся испытаниям, следует разместить предупреждающие знаки «Высокое напряжение»;
  • Во всё время проведения измерений прикасаться к токоведущим частям открытыми участками тела категорически воспрещается.

По окончании испытаний следует удалить остаточное электричество путём кратковременного заземления этих частей.

После того, как проверка изоляции кабеля мегаомметром полностью завершена, следует подготовить документальный отчёт, в котором должны содержаться такие обязательные пункты, как:

  • Дата и место их проведения;
  • Состав проверяемого и измерительного оборудования;
  • Результаты проведённых измерений, оформленные в виде протокола, составленного по особой форме.

В заключение отметим, что испытания сопротивления изоляции на прочность разрешается проводить лишь в условиях постоянства окружающей температуры и отсутствия влажных испарений. Во время дождя или гроз работа с напряжениями свыше 1 киловольта недопустима.

Видео

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector