400volt.ru

Домашнему электрику
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Система заземления tn c s

Чем опасно самостоятельное выполнение заземления в квартире (переделка TN-C в TN-C-S)

При эксплуатации домашней электропроводки наиболее важен вопрос безопасности эксплуатации бытовых электроприборов. Заземление электропроводки — основной способ минимизации воздействия на человека электрического тока в случае появления на металлическом корпусе бытовых электроприборов опасного для жизни человека потенциала.

Достаточно распространена проблема отсутствия заземления в квартире или в доме по причине питания от устаревших сетей конфигурации TN-C, в которых не предусмотрено заземление домашней электропроводки.

Для решения проблемы поступают следующим образом — выполняют заземление электропроводки посредством переделки системы TN-C в TN-C-S. В итоге неправильно выполненное заземление электропроводки делает эксплуатацию электропроводки еще более опасной, чем при отсутствии заземления как такового. В данной статье рассмотрим, чем опасно самостоятельное выполнение заземления посредством переделки системы TN-C в TN-C-S.

Чтобы понимать суть рассматриваемого вопроса рассмотрим, что собой представляют сети системы заземления TN-C и TN-C-S.

В системе TN-C рабочий нулевой проводник N и защитный заземляющий проводник PE совмещены в одном проводе на всем протяжении линии от трансформаторной подстанции до потребителя – так называемый PEN проводник. Причем данный совмещенный проводник заводится в квартиру или частный дом без разделения на нулевой рабочий и защитный проводники.

Нередко встречаются рекомендации относительно защиты домашних электроприборов путем зануления — присоединения заземляющего контакта в розетке к нулевому совмещенному проводнику PEN. В данном случае при появлении фазного напряжения на корпусе бытового электроприбора произойдет короткое замыкание и отключится автоматический выключатель в распределительном щитке.

Основной недостаток зануления заключается в том, что в случае обрыва нулевого провода от домашнего распределительного щитка до места зануления на корпусах оборудования появится фазное напряжение.

То же самое будет и в случае обрыва нулевого провода от трансформаторной подстанции до ввода в дом — на корпусе зануленного оборудования гарантировано появится фазное напряжение электросети.

В связи с этим зануление в сети TN-C выполнять запрещено. То есть такая система в быту эксплуатируется как двухпроводная – используется только фазный и нулевой рабочий проводник для питания электроприборов.

Система TN-C-S отличается от системы TN-C тем, что совмещенный проводник PEN при заходе в здание разделяется на рабочий нулевой N и защитный PE. В данной сети, как и в сети TN-C на заземляющем проводнике появится опасный потенциал в случае обрыва совмещенного проводника PEN до точки разделения.

Поэтому для предотвращения негативных последствий обрыва нуля в сети конфигурации TN-C-S согласно ПУЭ предъявляются требования относительно механической устойчивости к повреждению проводника PEN на линии электропередач, организации надежных повторных заземлений проводника PEN, а также надежности шины заземления PE непосредственно в доме.

Только при соблюдении данных требований электрическую сеть можно эксплуатировать, как сеть конфигурации TN-C-S, то есть использовать защитный проводник PE для заземления домашней электропроводки.

Основная ошибка при самостоятельном выполнении заземления заключается в том, что система TN-C представляется просто как система TN-C-S, в которой нет разделения защитного проводника. В данном случае переделка системы TN-C в TN-C-S сводится просто к разделению в главном распределительном щитке совмещенного проводника PEN на рабочий нулевой N и защитный PE. При этом не учитывается текущее состояние питающей сети. Если изначально в данной сети не предусмотрено заземления, то высока вероятность, что причина заключается в несоответствии электрических сетей требованиям ПУЭ.

Во-первых, это техническое состояние электрической сети – если оно неудовлетворительное, то соответственно ни о какой механической устойчивости к повреждению PEN-проводника речи не может идти. Во-вторых, отсутствие на линии достаточного количества повторных заземлений нулевого проводника еще больше увеличивает шансы появления на заземляющем проводнике опасного потенциала, который возникнет в результате обрыва нуля на линии. То есть в таком случае самостоятельно выполненное заземление будет источником опасности для жителей, эксплуатирующие заземленные бытовые электроприборы.

В данном случае есть два варианта. Первый вариант – по-прежнему эксплуатировать двухпроводную электропроводку, то есть без заземления до того, как данная проблема не будет решена путем приведения технического состояния питающих сетей к соответствию требований, предъявляемых к сети TN-C-S согласно ПУЭ.

Второй вариант – перейти на систему заземления TT, то есть сделать индивидуальный заземляющий контур, а совмещенный проводник PEN питающих электрических сетей использовать только в качестве рабочего нулевого провода N. Данный вариант актуален для жителей частных домов или для жителей квартир первых этажей, у которых есть возможность монтажа индивидуального контура заземления электропроводки.

Тел.: 8-918-974-52-93 E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

  • О компании
  • Коммерческое предложение
  • Наши клиенты
  • Выполненные объекты
  • Методики испытаний
  • Энергоаудит

Вы находитесь на сайте независимой аккредитованной в соответствии с законодательством РФ электротехнической лаборатории ООО «ЭнергоИнжиниринг»

Наша компания рада предложить Вам широкий спектр услуг, качество обслуживания и индивидуальный подход к каждому клиенту. Вы непременно окажитесь довольны нашим профессионализмом и оперативностью. Тел.:+7 (918) 079-73-07; +7 (918) 974-52-93

ООО «ЭнергоИнжиниринг» благодарит Вас за проявленный к нам интерес. Наша организация имеет богатый опыт в сфере электромонтажных работ, предлагает полный пакет услуг, предусматривающий проектирование, монтаж и испытание объектов электроснабжения, а так же комплексную поставку оборудования и материалов.

За все время своей деятельности наша электролаборатория зарекомендовала себя как ответственная организация, которая имеет возможность добросовестно выполнять работу на объектах любого уровня сложности.

Компании, работающие с нами, отлично знают, что наша работа обеспечивает сохранность их электрооборудования, позволяет обеспечить необходимую безопасность эксплуатации электроустановок и избежать претензий со стороны проверяющих органов.

Компании, работающие с нами, отлично знают, что работа нашей электролаборатории в Крыму и Севастополе обеспечивает сохранность их электрооборудования, позволяет обеспечить необходимую безопасность эксплуатации электроустановок и избежать претензий со стороны проверяющих органов.

В последнее время деятельность нашей компании была сфокусирована на работах в Имеретинской низменности на объектах Олимпийского парка, а так же ряде объектов капитального строительства в Краснодарском крае. Мы имеем богатый опыт взаимодействия с организациями-исполнителями и контролирующими органами РФ. Для нас важен каждый клиент и каждому мы уделяем должное внимание.

В настоящее время в список регионов, в которых осуществляет деятельность наша электролаборатория, помимо Москвы, Московской области и Краснодарского края входят АР Крым и г. Севастополь.

Предлагаемые рекомендации составлены на основе требований нормативных документов, регламентирующих организацию, объем и нормы испытаний электрооборудования и аппаратов электроустановок потребителей. Рекомендуемые методики испытаний большей частью ориентированы на приемосдаточные, сертификационные и профилактические испытания электроустановок жилых и общественных зданий. Вместе с тем они могут быть использованы для испытаний отдельных видов оборудования промышленных электроустановок.

Энергоаудит – это первый и важный шаг к экономии всех видов энергии на Вашем предприятии, а значит и уменьшении затрат!

Кроме того, это выполнение обязательных требований федерального закона № 261 и других распоряжений Правительства об энергосбережении и о повышении энергетической эффективности.

S5 Box

Система заземления TN-C-S

Принцип системы TN-C-S основан на том, что PEN проводник разделяется в определенном месте и приходит к потребителю двумя отдельными проводниками:

  • нулевой рабочий проводник N
  • защитный проводник PE

В данном случае электроснабжение квартиры осуществляется либо 3-жильным кабелем (фаза, N, PE) при однофазном питании (см. рисунок выше), либо 5-жильным кабелем (А,В,С, N, PE) при трехфазном питании.

В отличии от рассмотренной ранее системы TN-C, в этой системе допускается устанавливать розетки с наличием клеммы для заземления — евророзетки.

Защитный проводник РЕ необходимо соединить с корпусом электрооборудования (СВЧ-печь, электроплита, стиральная машина и другие электрические приборы). Нулевой рабочий проводник N служит только для передачи электроэнергии потребителю.

Разделение PEN проводника в системе TN-C-S

Сначала давайте определимся с местом разделения PEN-проводника в системе TN-C-S.

Чаще всего разделение PEN-проводника осуществляется на вводе в жилой дом, т.е. в вводно-распределительном устройстве (ВРУ) Вашего дома.

Как правильно произвести электромонтаж по разделению проводника PEN?

В ВРУ жилого дома должны быть установлены:

  • нулевая шина N
  • шина заземления PE

PEN проводник с вводного кабеля соединяем с шиной заземления РЕ. А между шиной заземления РЕ и нулевой шиной N устанавливаем перемычку.

Шину заземления PE необходимо заземлить (повторное заземление), т.е. соединить с контуром заземления жилого дома.

Очень важно. PEN проводник от источника питания до места разделения должен иметь сечение: не меньше 10 кв.мм. по меди, и не меньше 16 кв.мм. по алюминию.

Достоинства системы заземления TN-C-S

Система TN-C-S — это самая перспективная система заземления для нашего государства. С помощью нее обеспечивается высокий уровень безопасности от поражения электрическим током, в связи с использованием устройств защитного отключения (УЗО).

Самый главный недостаток системы TN-C-S возникает в случае обрыва PEN проводника. При нарушении изоляции, корпус электрических приборов может оказаться под напряжением относительно земли, что приведет к электрической травме человека.

Системы защитного заземления

Защитное заземление — это электрическое соединение с землей (ее эквивалентом) металлических нетоковедущих частей, которые могут оказаться под напряжением. Соответственно, при пробое изоляции токоведущего провода на корпус заземленного электроприбора ток будет проходить по заземляющему проводнику (PE), что исключит поражение электрическим током человека. Цели заземления: защитное заземления служит исключительно для защиты людей от поражения электрическим током.

Читать еще:  Подключение и ремонт баластника для люминесцентных ламп

Условные обозначения систем расшифровываются следующим образом

    Для электроустановок напряжением до 1 кВ (в отношении применяемых систем заземления) приняты следующие обозначения:
  • система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников
  • система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении
  • система ТN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении
  • система TN-С-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания
  • система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены
  • система TT — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника
    Первая буква — состояние нейтрали источника относительно земли:
  • Т — заземленная нейтраль
  • I — изолированная нейтраль
    Вторая буква — состояние открытых проводящих частей относительно земли:
  • Т — открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
  • N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
    Последующие (после буквы N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
  • S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;
  • С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник).

Системы заземления TN-C-S, TN-C, TN-C, TT, IT

Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:

  • трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем — 220 вольт.
  • однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.

А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.

Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.

В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.

Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.

Условные обозначения

Для лучшего понимания материала, разберем принятые условные обозначения:

  • L1, L2, L3 — проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
  • N — рабочий нуль источника питания (нулевой проводник).
  • PE — защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
  • PEN — проводник, совмещающий в себе рабочий и защитный нули.

Самая безопасная система, это TN-S.

Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).

На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.

Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.

Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.

Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.

В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.

Заземление TN-C не обеспечивает полной безопасности по следующей причине:

«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).

Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.

В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.

По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!

Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.

Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!

Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.

Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.

Как она устроена, и в чем отличие от TN-S?

В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.

На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.

В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.

Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.

При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.

Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.

Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.

Читать еще:  Проверка сечения кабеля

Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.

Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.

Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.

Вывод

Единственный безопасный способ — установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.

После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.

Видео по теме

Что представляет собой система заземления TN-C-S

  • Существующие системы заземления
  • Описание схемы электроснабжения TN-C-S
  • Как сделать заземляющий контур
  • Преимущества и недостатки TN-C-S

Существующие системы заземления

В Российской Федерации в электросетях обслуживающих жилой фонд применяются следующие типы систем заземления:

  • TN-C
  • TN-S
  • TN-C-S
  • TT
  • IT

TN-C. Устаревшая, но самая распространенная система. Львиная доля частного сектора и устаревшего жилого фонда многоквартирных домов пользуется данным типом электроснабжения. При системе TN-C заземляющий контур обустроен на трансформаторной понижающей подстанции, обслуживающую дом или улицу, нулевая точка трансформатора наглухо заземлена. Проводник, подключенный к нулевой точке PEN, подается в жилье и выполняет функции нулевого рабочего N и защитного провода PE. В связи с тем, что TN-C наиболее проста и экономична, она в полной мере не отвечает требованиям электробезопасности.

TN-S. В этом случае нулевой PN и защитный PE проводники выполнены раздельно. Данный тип защиты в полной мере обеспечивает мероприятия безопасности от поражения электрическим током, поэтому при организации электроснабжения новых микрорайонов используют именно систему TN-S.

Системы TT и IT используются в специальных условиях, о них мы поговорим в отдельных статьях. Сейчас же более подробно рассмотрим плюсы и минусы, а так же что собой представляет система TN-C-S.

Описание схемы электроснабжения TN-C-S

Перевод энергоснабжения жилого фонда, с системы TN-C на TN-S в настоящее время не реален, потому что потребует колоссальных затрат на модернизацию. Для обеспечения соответствующих норм электробезопасности оптимальным вариантом будет использование системы TN-C-S, которая является комбинацией TN-C и TN-S.

Смысл ее заключается в том, что от подстанции до вводного распределительного устройства (ВРУ) дома или коттеджа электроснабжение осуществляется с использованием одного проводника PEN. В водных распределительных устройствах (ВРУ) подъездов или частных домов, оборудованных повторным заземлением, происходит разделение PEN на нулевой PN и защитный проводник PE.

Согласно схеме предоставленной ниже, при заземлении типа TN-C-S к клеммам потребителей трехфазной нагрузки подводится 4 проводника, 3 из которых являются фазными проводами А, В, С, а четвертый – нейтральным проводом PN.

Защитный провод PE выполнен в виде перемычки между металлическим корпусом электроприбора и заземляющим контуром. Подключение потребителя к однофазной сети осуществляется одним фазным проводом и нейтралью PN с последующим заземлением корпуса выполненного из металла.

Схема разделения проводника PEN в ВРУ:

Очень важно соблюсти необходимую величину сечения заземляющего проводника между заземляющим контуром и шиной заземляющего контура дома. Согласно п. 1.7.117 (см. Главу 1.7), заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный — 10 мм2, алюминиевый — 16 мм2, стальной — 75 мм2.

Как сделать заземляющий контур

В многоквартирных домах мероприятиями по переходу на систему заземления TN-C-S, как правило, занимаются специализированные предприятия. Они производят соответствующие переключения в ВРУ дома или подъезда и обустраивают дополнительный заземляющий контур. Практика показывают, что бывают случаи, когда безграмотные в вопросах электротехники, но не в меру активные жильцы, пытаются совершить модернизацию схемы электроснабжения для своей отдельно взятой квартиры самостоятельно. Для этой цели в качестве заземляющего контура они пытаются использовать стояки водопровода или теплоснабжения, что категорически запрещено, т.к. данный способ неизбежно приводит к электротравматизму и оказывает пагубное воздействие на срок службы трубопроводов и приборов отопления.

Для условий частного дома изготовить дополнительное заземление не сложно, самой популярной и надежной является замкнутая схема в виде треугольника:

Электрод, погруженный в землю – уголковая сталь, перемычка – стальная полоса, заземляющий проводник – стальной прут. Более подробно о том, как сделать заземление в доме, мы рассказывали в отдельной статье!

Преимущества и недостатки TN-C-S

Заземление типа TN-C-S, как и другие системы имеет свои плюсы и минусы. К значительным ее преимуществом можно отнести простоту и экономичность, способность обеспечить должный уровень электробезопасности. Серьезным недостатком TN-C-S является то, что при обрыве проводника PEN на участке до его разделения проводник PE, а также все заземленные металлические корпуса электроприборов будут находиться под напряжением.

Напоследок рекомендуем просмотреть полезные видео по теме:

Вот мы и предоставили описание системы заземления TN-C-S. Надеемся, благодаря схемам и видео вам стало понятно, что собой представляет данный вариант электроснабжения и как его организовать своими руками.

Будет интересно прочитать:

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.
Читать еще:  Распределительные коробки для электропроводки

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Система заземления TN-C-S

Эта статья снова посвящена заземлению. Система заземления TN-C-S считается достаточно популярной на сегодняшний день. Принцип системы TN-C-S достаточно прост и он основывается на том, что PEN проводник должен разделяться в определенном месте. К потребителю он приходит двумя отдельными проводниками:
– Нулевой рабочий проводник N.
– Защитный проводник PE.

В этой системе заземления вы также можете устанавливать розетки, которые имеют клеммы заземления. Защитный проводник PE необходимо соединить с корпусом электрооборудования. Нулевой проводник N служит для того чтобы передавать электроэнергию потребителям. В этой статье вы найдете подробную информацию о том, как выполнить монтаж системы заземления TN-C-S.

Система заземления TN-C-S и разделение проводника

Система заземления типа tn c s предполагает в себе разделение PEN проводника в системе TN-C-S. Многие электромонтажники осуществляют разделение проводника на вводе в жилой дом.

Для того чтобы выполнить разделение PEN проводника вам необходимо чтобы ВРУ имели:

  • Нулевую шину.
  • Шину заземления PE.

Для выполнения этого процесса вам необходимо соединить PEN проводник с шиной заземления PE. Между шиной заземления PE и нулевой шиной N вам необходимо установить перемычку. Если вы выполняете эту систему, тогда вам необходимо знать отличия зануления от заземления.

Система заземления TN-C-S предполагает в себе то, что шину заземления PE вам необходимо будет соединить с контуром жилого дома.

Преимущества системы заземления TN-C-S

Система TN-C-S считается наиболее перспективной системой заземления. Основным преимуществом считается то, что схема системы заземления tn-c-s считается достаточно простой. Разобраться с ней может каждый. Посмотреть схему можно на фото ниже.

Это далеко не все ее преимущества. Ко второму преимуществу можно отнести то, что она имеет высокую безопасность. С ее помощью вы сможете защитить жизнь человека от поражения электрическим током. При установке этой системы также необходимо выполнить установку УЗО и систему уравнивания потенциалов.

Основные недостатки системы TN-C-S

Система заземления TN-C-S также может иметь и недостатки. Наиболее главный недостаток может возникнуть в случае обрыва проводника PEN. Если изоляция будет нарушена, тогда может возникнуть проблема напряжения электрических приборов. Впоследствии это может привести к повреждениям человека от тока. При необходимости вы можете выполнить систему уравнивания потенциалов.

Вывод

Если в ваших домах установлена система заземления TN-C, тогда вам следует задуматься о переходе на более новую и надежную систему TN-C-S. От этого перехода будет зависеть ваша безопасность. Система заземления TN-C-S должна выполняться только профессионалами.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector