400volt.ru

Домашнему электрику
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фаза электрическая это

Что такое фаза и ноль в электричестве

Почти ежедневно мы пользуемся электричеством и многие знают, что в обыкновенной бытовой розетке один из контактов ‒ фаза, а другой ‒ ноль. В то же время, что такое фаза в электричестве, особенно для новичка, известно немногим. Всем привычней «плюс» и «минус», а вот фаза – ноль как бы совсем другое электричество. На самом деле все очень просто ‒ привычный «плюс» и «минус» меняются по очереди 50 раз за секунду на одном контакте, который и называется фазой.

Если говорить более профессионально, то в обычной сети переменное напряжение частотой 50 Гц, а фаза ‒ период этого напряжения, протекающий за 1/50 секунды. В общем понятии определение ‒ что такое фаза в электричестве, звучит как «повторяющийся период изменения напряжения за единицу времени». Выглядит период следующим образом. Напряжение возрастает от нуля вольт до +220 V, потом падает обратно до нуля и растет уже в отрицательную сторону до ‒220 V, и снова падает на ноль. Затем период повторяется 50 раз за каждую секунду. Если выразить фазу графически, где ось абсцисс будет шкалой времени, а ось ординат шкалой напряжения, то получится синусоида – волна, состоящая из гребня и впадины. Именно поэтому переменный ток еще называют «синусоидальным».

С нулем все намного проще. «Ноль» – это ноль вольт (0 V), то есть нулевой потенциал. Он служит своеобразным коллектором, принимающим электрический ток, прошедший через нагрузку, например, через лампочку. Если ноль отключить, то электрический ток остановится и лампочка, оставаясь под напряжением, все равно светить не будет.

Теперь, когда вы знаете что такое фаза и ноль в электричестве, вполне логично задать вопрос ‒ зачем все так усложнять и почему в розетке не «плюс» и «минус»? Чтобы это объяснить предлагаем совершить маленькое путешествие вместе с переменным током, посмотрев для чего это нужно.

Рождение

«Колыбелью» электрического тока, которым мы повседневно пользуемся, является электростанция. Несколько огромных генераторов мощностью в десятки мегаватт. В статоре генератора расположены 3 обмотки. Ротор вращается, создавая переменное магнитное поле, которое возбуждает в обмотках переменный ток. Как видите, ток уже появляется переменным. Дальше его нужно передать на тысячи километров, но есть «загвоздка». Учитывая огромную мощность, ток измеряется в миллионах ампер. Ток всего 0,25 А раскаляет нить лампочки до свечения, а что же произойдет с проводами при нескольких миллионах? Они попросту сгорят за долю секунды.

Чтобы снизить ток, нужно поднять напряжение. Это можно сравнить с потоком воды по трубе. Если перекачивать десятки литров в секунду по тонкой трубке, то напор будет настолько сильный, что ее скорей всего порвет. Но если применить толстую трубу, то все пройдет без сбоев. Математически это выглядит так: I = P/U, то есть ток равен потребляемая мощность деленная на напряжение. Из формулы видно, что чем больше U (напряжение), тем меньше I (ток), именно поэтому напряжение и повышают до 100 – 200 тыс. вольт.

Трансформация тока

Повышают напряжение на трансформаторной станции. Для повышения напряжения, ток сначала нужно преобразовать в магнитное поле, а затем снова в ток. Процесс происходит в трансформаторе. Здесь опять переменный ток «выигрывает», ведь постоянный не трансформируется. Чтобы возбудить ток во вторичной обмотке трансформатора нужно переменное электромагнитное поле, которое индуцируется только переменным током.

В большинстве электробытовых приборов (телевизор, компьютер, блок питания) происходит аналогичный процесс трансформации, только напряжение наоборот понижается. Если бы в сети был постоянный ток, то его пришлось бы сначала преобразовывать в переменный.

На своем пути ток проходит еще много трансформаторных станций, понижая напряжение на каждом ответвлении. В конечном итоге ток напряжением 10 кВ попадает на последнюю ТП и там, понижаясь до 250 V на каждой фазе, отправляется к конечному потребителю лампочки, телевизоры, утюги и другую технику.

Как определяется фаза

Когда включаем в розетку вилку, то где фаза и ноль неважно, но при подключении некоторого оборудования это имеет значение. Например, кнопка звонка подключается на разрыв нуля, а выключатель света ‒ на фазу. Для определения электрической фазы существует очень простой прибор – индикатор, похожий на отвертку. Хотя есть другие, например, ПИН-50 или варианты индикаторов с ЖК- дисплеем, где, кроме индикации, отображается напряжение. Также существуют приборы, определяющие наличие напряжения через изоляцию. Если при касании щупом контакта лампочка загорается, то это фаза, если нет ‒ «ноль» или «земля». Индикацию фазы производят с целью определения, а также чтобы убедиться в отсутствии напряжения перед началом работ на линии.

Маркировка проводов

В 1-фазной внутриквартирной электрической сети проводка осуществляется трехжильным проводом, где каждая жила имеет изоляцию определенного цвета. Цвета электрических проводов обозначают, где земля, фаза, ноль.

  • Ноль – синий или голубой.
  • Земля – желто-зеленый.
  • Фаза – белый, черный или коричневый.

Хотя в старых домах, где проводку осуществляли проводом АПВ, цветовая маркировка не практиковалась. Знать каким цветом фаза и ноль маркируются в электричестве нужно для упрощения ремонтно-монтажных работ, хотя 100% доверять не стоит, ведь монтажники могли ошибиться.

Что такое «фаза» и «ноль» в электричестве?

В повседневной жизни человек очень часто встречается с электричеством. Более того, электрические приборы сопровождают нас каждый день. Помимо того, что мы постоянно пользуемся электрическим оборудованием, так еще и приходит время их поломки, следовательно, дальнейшей починки. И прежде чем приступить к работе с электричеством нужно, как минимум, знать теоретическую базу, не говоря уже о практике. Конечно, во избежание причинения вреда имуществу и вашему бесценному здоровью разумнее было бы обратиться за помощью к специалисту. Но если Вы хотите сами научиться понимать и разбираться в столь сложном деле как электричество, необходимо начать с самого главного.


Фаза и ноль – знакомые на слух, но чужие для понимания понятия

Данные понятия нередко встречались каждому человеку, и каждый предполагал, что это каким-то образом связано с электричеством. Знать и понимат ь, что такое «фаза» и «ноль» крайне необходимо, чтобы заниматься электромонтажными работами (например, самая простая установка светильника, бра или люстры). Перед тем, как прикоснуться к электричеству, необходимо обязательно восполнить все пробелы в знаниях. Понимать, что такое фаза и ноль нужно хотя бы для того, чтобы правильно подсоединить провода.

Существует три главных провода : фаза, ноль и заземление . Определить где и какой проводок можно при помощи подручных средств или по цвету. Специалисты различают провода с первого взгляда, а обычному человеку нужно времени побольше, особенно, если отсутствуют необходимые для этого приборы. На самом деле, способов распознавания кабелей не очень много, тем более безопасных. Именно поэтому чаще всего провода различают по цвету.

Цвет — главный ориентир при распознавании проводов

Самый простой и безопасный метод. Для того, чтобы правильно выделить фазу и ноль , нужно знать какой цвет чему принадлежит. Лучше всего найти достоверную информацию, где четко обозначены принятые в конкретной стране стандарты. Каждый проводок имеет свой определенный цвет, следовательно, найти ноль будет на так уж сложно. Все полученные при поиске информации знания пойдут на пользу и помогут быстро справиться с работой.

Данный метод очень актуален в новостройках, поскольку электропроводка протягивается квалифицированными специалистами, которые соблюдают все установленные стандарты. Например, в нашей стране в 2004 году был принят стандарт IEC 60446 , в котором регламентируются все процессы деления фазы, заземления, нуля по цвету.

Обязательно нужно учитывать следующее:

  • синий (сине-белый) цвет провода – рабочий ноль;
  • желто-зеленый цвет – защитный ноль;
  • иные цвета – фаза (красный, коричневый, белый, черный и др.).

Именно такие обозначения используются чаще всего. Если же проводка в Вашем доме плохая и старая и ее монтажом занимались непрофессионалы, то правильнее будет воспользоваться другими методами.

Поиск фазы и ноля подручными средствами

По мнению специалистов первоначально нужно найти фазу , чтобы облегчить дальнейшее определению. Данный метод возможно применять наряду с предыдущим.

Индикаторная отвертка – неотъемлемый инструмент в бытовом наборе любого домашнего умельца. Ее предназначение заключается как в проведении электромонтажных работ, так и в процессе обычной замены лампочек или при монтаже осветительных приборов.

Метод настолько простой, что справится с ним может абсолютно любой человек. В момент касания отверткой цветного провода под напряжением индикатор должен загореться. То есть, поступает сигнал о присутствии сопротивления, следовательно, исследуемый кабель – фаза .

Суть данного метода заключается в присутствии внутри отвертки лампочки и резистора. В момент замыкания электрической цепи сигнал загорается. Процедура проходит абсолютно безопасно для человека, поскольку в инструменте имеется сопротивление, которое понижает ток до минимума.

Контрольная лампа – еще один способ определения проводов

Данный способ применим для распознавания кабелей в трехпроводной сети. При использовании этого метода нужно быть очень осторожным и внимательным, поскольку подразумевается создание контрольной лампы.

Процесс заключается в следующем:

  • в патрон помещается обыкновенная лампа;
  • в клеммах располагаются провода без изоляции на концах;
  • поочередное присоединение проводов по цвету.

Если нет возможно сти создать подобную конструкцию, можно применить обычную настольную лампу с электрической вилкой. Нужно знать, что при таком методе можно определить лишь приблизительное присутствие среди проводов фазного. Сигнал контрольной лампы показывает, что с высокой вероятностью какой-то провод – ноль , а какой-то – фаза . Если свет не загорается, значит фазного провода среди исследуемых нет. Но может быть, что нет именно нулевого провода.

Таким образом, данный способ целесообразен в большей степени для того, чтобы определить правильность монтажа и рабочее состояние проводки.

Как определить сопротивление петли «фаза-ноль»

Периодическое проведен ие замеров сопротивления петли «фаза-ноль» гарантирует бесперебойную работу электроприборов и проверку автоматов. Это необходимо делать, поскольку самыми главными предпосылками поломок являются перегрузки электрических сетей и короткие замыкания. Именно замеры сопротивления позволяют избежать подобных ситуаций.

Немногие знают, что такое петля «фаза-ноль» , но понимать это крайне необходимо. Под этим понятием подразумевается обозначение контура, возникающего в итоге соединения нулевого провода, который располагается в заземленной нейтрали. Именно замыкание данной электросети и образует петлю.

Для измерения сопротивления в петле «фаза-ноль» существуют следующие методы:

  • падение напряжения в отключенной цепи;
  • падение напряжения при сопротивлении возрастающей нагрузки – самый часто используемый способ, поскольку выгодно отличается от других удобством, быстрым измерением, безопасностью;
  • использование специального прибора, который интерпретирует замыкание в цепи.

ФАЗА, НОЛЬ, ЗАЗЕМЛЕНИЕ

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически ( На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Читать еще:  Асинхронные электродвигатели с фазным ротором

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Фаза тока.

У новичков в мире электрики и домовладельцев иногда возникает вопрос: что такое фаза тока в бытовой электропроводке. Связано это с необходимостью починить какой-либо электроприбор.

В возникшей ситуации наиболее приоритетной задачей мастера должно стать соблюдение правил техники безопасности, а не проявление прикладных навыков и умений. Знание элементарных законов функционирования тока и процессов, проходящих внутри бытовых электроприборов не только поможет справиться с большинством неисправностей, возникающих в них, но и сделает этот процесс наиболее безопасным.

Конструкторы и инженеры делают все возможное, чтобы предотвратить несчастный случай при работе с электричеством в быту. Задача потребителя сводится к соблюдению предписанных норм.

Далее мы рассмотрим:

  • однофазный ток;
  • двухфазный ток;
  • трехфазный ток.

Однофазный ток.

Переменный ток, который получают при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током.

Как правило, для передачи однофазного тока используют 2 провода. Называются они фазным и нулевым соответственно. Напряжение между этими проводами составляет 220 В.

Однофазное электропитание. Однофазный ток можно подвести к потребителю двумя различными способами: 2-проводным и 3-проводным. При первом (двухпроводном), для подведения однофазного тока используют два провода. По одному протекает фазный ток, другой предназначен для нулевого провода. Таким образом электропитание подведено почти во все, построенные в бывшем СССР, дома. При втором способе для подведения однофазного тока — добавляют ещё один провод. Называется такой провод заземлением (РЕ). Он предназначен для предотвращения поражения человека электрическим током, а так же для отвода токов утечки и предотвращения приборов от поломки.

Двухфазный ток.

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол Pi2 или на 90 °.

Наглядный пример образования двухфазного тока. Возьмем две катушки индуктивности и расположим их в пространстве таким образом, чтобы их оси были взаимно перпендикулярны, после чего запитаем систему катушек двухфазным током, как результат получим в системе два магнитных потока. Вектор результирующего магнитного поля будет вращаться с постоянной угловой скоростью, как следствие, возникает вращающееся магнитное поле. Ротор с обмотками, изготовленными в виде короткозамкнутого «беличьего колеса» или представляющий собой металлический цилиндр на валу, будет вращаться, приводя в движение механизмы.

Передают двухфазные токи при помощи двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Трехфазной системой электрических цепей называется система, которая состоит из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током. Трехфазный ток легко передаётся на дальние расстояния. Любая пара фазных проводов имеет напряжение 380 В. Пара — фазный провод и нуль — имеет напряжение 220 В.

Распределение трёхфазного тока по жилым домам выполняется двумя способами: 4-проводным и 5-проводным. Четырёхпроводное подключение выполняется тремя фазными и одним нулевым проводом. После распределительного щита для питания розеток и выключателей используют два провода — одну из фаз и нуль. Напряжение между этими проводами будет составлять 220В.

Пятипроводное подключение трехфазного тока — в схему добавляется защитный, заземляющий провод (РЕ). В трёхфазной сети фазы должны нагружаться максимально равномерно, в противном случае может произойти перекос фаз. От того, какая электропроводка используется в доме, зависит какое электрооборудование можно в неё включать. К примеру, заземление обязательно, если в сеть включаются приборы с большой мощностью — холодильники, печи, обогреватели, электронные бытовые приборы — компьютеры, телевизоры, устройства, связанные с водой — джакузи, душевые кабины (вода проводник тока). Трехфазный ток необходим для электропитания двигателей (актуальных для частного дома).

Устройство бытовой электропроводки.

Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.

Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:

  • Рабочий ноль (на картинке изображен синим)
  • PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)

Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.

Итак, что же такое фаза тока и ноль? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» — это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.

Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.

Что происходит в нуле и фазе при обрыве провода.

Обрыв электрического провода часто обусловлен элементарной рассеянностью мастера – забыть присоединить к определенному прибору в доме фазу тока или ноль – проще простого. Кроме того, нередки случаи отгорания нуля на подъездном щитке в связи с высокой нагрузкой на систему.

В случае обрыва соединения любого электроприбора в доме со щитком, этот прибор перестает работать – ведь цепь не замкнута. При этом не имеет значения, какой именно провод разорван – ноль или фаза тока.

Аналогичная ситуация происходит, когда разрыв наблюдается между распределительным щитком многоквартирного дома и щитом конкретного подъезда – все квартиры, подключенные к щиту подъезда, окажутся обесточены.

Вышеописанные ситуации не вызывают серьезных сложностей и не представляют опасности. Они связаны с обрывом лишь одного проводника и не несут в себе угрозы безопасности электроприборов или людей, находящихся в квартире.

Самая опасная ситуация – исчезновение соединения между заземлительным контуром подстанции и средней точкой, к которой подключена нагрузка внутридомового электрощита.

В этом случае электрический ток пойдет по контурам AB, BC, CA, а общее напряжение на этих контурах – 380 В. В связи с этим возникнет очень неприятная и опасная ситуация – на одном электрощитке может вовсе не быть напряжения, так как хозяин квартиры посчитал нужным отключить электроприборы, а на другом возникнет высокое напряжение близкое к 380 вольтам. Это вызовет выход из строя большинства электроприборов, ведь номинальное напряжение работы для них – 240 вольт.

Конечно, такие ситуации можно предотвратить – существуют достаточно дорогостоящие решения для защиты от скачков напряжения. Некоторые производитель встраивают их в свои приборы.

Как определить ноль и фазу собственными силами.

Для определения нуля и фазы тока существуют специальные отвертки-тестеры.

Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:

  • Наконечник для подключения к фазовому потенциалу розетки;
  • Резистор, снижающий амплитуду электротока до безопасных пределов;
  • Светодиод, загорающийся при наличии потенциала фазы тока в цепи;
  • Плоский контакт для создания цепи сквозь тело оператора.

Принцип работы с отверткой-тестером показан на картинке ниже.

Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена фаза тока, а к какому – ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.

Показания стрелки вольтметра означают:

1. Наличие напряжения 220 В между фазой и нулем

2. Отсутствие напряжения между землей и нулем

3. Отсутствие напряжения между фазой и нулем

Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.

Фаза и ноль в электричестве

  • Фаза и ноль в электричестве
  • Что такое фаза и ноль
  • Фаза, чем характеризуется
  • Ноль, характеристика
  • Заземление, его функция

Фаза и ноль в электричестве

С понятиями «фаза» и «ноль» сталкивался каждый человек. Это основы электричества, которое питает бытовые приборы. Понять природу этих терминов можно, если разобраться с фундаментальными знаниями электротехники.

Электрическим зарядом называют характеристику, с помощью которой определяют способность разнообразных предметов выполнять функцию источника электромагнитного поля.

Электромагнитные волны испускают электроны. Во время образования поля эти элементарные частицы приходят в движение. Таким образом, возникает электрический ток.

Током называют движение электроном в четко определенном направлении в условиях металлического проводника, на который воздействует существующее поле.

Различают постоянный и переменный ток. В первом случае для тока характерно отсутствие изменений в течение определенного времени. Если величина тока и его направление меняются во временном интервале, то такой ток называют переменным.

Читать еще:  Разбилась энергосберегающая лампочка: что делать

В роли постоянных источников тока выступают разные типы аккумуляторов, батареек и других подобных устройств. Переменный ток питает бытовые и промышленные розетки жилых и промышленных объектов. Данный вид электричества характеризуется:

  • простотой получения;
  • возможностью преобразования в разные степени напряжения;
  • легкостью передачи по проводникам даже на значительные расстояния с минимальными потерями.

Переменный ток представляет собой синусоиду или синусоидальный ток. Вначале он возрастает направленно. Достигая определенного параметра или максимальной амплитуды, ток начинает уменьшаться. В какой-то момент времени значение становится равным нолю, и вновь наблюдается нарастание тока, но в противоположном направлении.

Наиболее простым примером электрической цепи с синусоидальным током является однофазная цепь, включающая три кабеля:

  • проводник, по которому ток поступает к потребителям;
  • кабель, проводящий электричество в обратном направлении;
  • земля.

Высокой эффективностью характеризуются трехфазные системы. В этом случае в сети присутствует три фазы и один ноль. Подобный способ электроснабжения используется для подключения к электричеству всех жилых объектов. Перед тем, как завести ток в квартиру, он разделяется на фазы, каждой из которых присваивается нулевой провод. Достоинством данного способа организации систем электроснабжения является сбалансированность нагрузки нулевого тока через ноль.

Если перепутать провода при подключении электричества, то произойдет короткое замыкание. Для того чтобы избежать подобных проблем, проводники маркируют цветом. Однако опытные специалисты рекомендуют перепроверить фазу и ноль с помощью измерительных приборов.

В системе подачи электричества также присутствует провод, который называется землей. Данный компонент сети не обладает электрической нагрузкой, а выполняет функцию защиты. В случае, когда сеть повреждена, с помощью земли исключается поражение электрическим током, так как избыток напряжения будет отводиться на землю.

Что такое фаза и ноль

Фаза – это проводник, который транспортирует электричество к потребителям.

Ноль представляет собой кабель, необходимый для возвратного движения электрического тока от потребителей.

Электрическая энергия передается к розеткам от подстанций. С их помощью напряжение снижается до 380 Вольт. Трансформаторы оснащены вторичной обмоткой с соединением по схеме «звезда». В этой системе три контакта объединяются в точке «0», а остальные три – выходят на клеммы «А», «В» и «С».

Проводники, которые соединяют в нулевой точке, подключают к земле. В этом же месте проводники делят на ноль, обозначенный синей маркировкой, и защиту «РЕ»-кабель желто-зеленого цвета. Такая модель называется «TN-S» и широко используется при прокладке сетей электроснабжения. Исходя из данной схемы, к распределительному устройству подключают три провода фазы и два ноля.

Объекты жилья и производственные здания старого типа застройки подключаются к электричеству по другим схемам. В таких случаях отсутствует «РЕ»-проводник, поэтому систему называют четырехпроводной и обозначают, как «TN-C».

Электрическая проводка с подстанции подключается к щитку в системе из трех фаз. Далее схема делится на отдельные подъезды. Для каждой квартиры в доме предусмотрено напряжение одной фазы в 220 Вольт и защитный «РЕ»-кабель. Таким образом, нагрузка на систему распределяется равномерно. По структуре схема подключения электричества в домах соответствует системе на подстанциях, то есть представляет собой «звезду». При отсутствии в розетках подключения потребителей, ток в данной системе протекать не будет.

Фаза, чем характеризуется

Фазой называют провод, находящийся под напряжением. Данный проводник располагается относительно другого, называемого ноль. Обоснованием для определения фазы является особенность устройства подстанций. Вырабатываемый на них переменный ток обладает одинаковой частотой в 50 Гц. В то же время ЭДС сдвинуты относительно друг друга во времени на определенный фазовый угол.

На первом рисунке схематично изображена система электроснабжения стандартного жилого объекта с тремя фазами и одним нулевым проводником. Второе изображение демонстрирует особенности подключения электричества к квартире от трансформатора. Потребитель в виде электроприбора обозначен, как Rн. В этом случае из трансформатора выходит два провода в виде фазы и ноля, к которому подключается заземление Змл. Третий рисунок показывает, как наглядно производится монтаж электроснабжения при отсутствии нулевого заземленного провода, проведенного в квартиру. Заземление в этой ситуации располагается непосредственно в жилом помещении.

Понятие фаза вытекает из определения электричества. Характер образования и течения переменного тока позволяют разобраться в природе и назначении фазного провода. Переменный ток отличается от постоянного значением и направлением, его можно наблюдать в розетках и прямых подключениях к электрощиткам. Основные характеристики переменного тока:

  • напряжение;
  • частота.

Однофазным током называют переменный ток, получаемый по средствам вращательного движения проводника или системы проводников в условиях магнитного потока. Провода при этом могут быть объединены в одной катушке. Для того чтобы передавать электроэнергию применяют два провода, включая фазу и ноль. Показатель напряжения между проводниками составляет 220 Вольт. Существует два способа подключения однофазного тока к потребителю:

  • двух-проводной;
  • трех-проводной.

В первом случае используется два проводника, по одному из которых передается фазный ток, а второй является нулевым. Это устаревшая схема электроснабжения, которая эксплуатировалась во времена СССР. Вторая методика предполагает наличие еще одного провода, который необходим для заземления, что позволяет предотвратить поражение человека электрическим током, выполнить отвод утечек электричества и исключить поломки электроприборов.

Двухфазный ток называют слиянием двух фаз, которые сдвинуты относительно друг друга. Угол сдвига может составлять 90 градусов. К примеру, можно взять две катушки с перпендикулярно расположенными осями, которые подключены к двухфазному току. В результате образуется система из двух магнитных полей. Результирующее магнитное поле будет обладать вектором, который вращается под одинаковым углом и с неизменной скоростью, создавая магнитное поле.

Трехфазный ток включает три фазы, каждая последующая из которых смещена относительно предыдущей на 120 градусов. Прокладка сетей электроснабжения в данном случае выполняется с помощью четырех кабелей, включая три фазы и ноль, либо добавляя еще один провод заземления. На выходе из распределительного щитка ток поступает к розеткам по одной фазе и ноль.

Ноль, характеристика

В нулевом проводе отсутствует напряжение, что отличает его от фазного проводника. В процессе отбора мощности ноль не перегружается, но служит проводником для электрического тока, который протекает в обратном направлении. Если напряжения нет, то ноль не может поразить человека электрическим током. С помощью нулевого кабеля электрическая цепь замыкается. При отсутствии ноля электричество не поставляется к потребителям. Провод обеспечивает систему мощностью, которая питает бытовые приборы, и, по сути, является землей.

Нулевой проводник выходит из трансформатора, соединенного нулевой шиной с заземлением. Такое оборудование установлено на подстанции. В самом начале именно земля обеспечивает нулевой потенциал, что является причиной возникновении путаницы при определении земли и ноля. Электричество передается по воздушной линии электропередачи. ВЛ выходит из трансформаторной подстанции в комплекте с четырьмя проводами:

  • 3 фазных проводника;
  • один нулевой кабель.

Ноль соединяется с аналогичным контактом трансформаторной установки. При монтаже воздушных линий учитывается следующее правило: каждая вторая опора оснащается повторным заземлением. Это необходимо, чтобы связать ноль с заземлением, обеспечивая полноценную связь системы «фаза-ноль». Таким образом, потребители снабжаются электричеством не менее 220 Воль.

Основным назначением нуля является замыкание электрической цепи. При этом создается ток, который питает все электроприборы и оборудование. Два провода создают разность потенциалов, благодаря чему появляется электричество. Название ноля оправдано нулевым потенциалом, которым он характеризуется. За счет разности потенциалов возникает напряжение в сети от 220 Вольт до 230 Вольт.

Заземление, его функция

Современное электрооборудование может полноценно функционировать при наличии защиты от случайного удара током. С этой целью разработаны специальные устройства, которые называют заземляющими.

Заземление представляет собой специально организованную систему для обеспечения безопасных условий работы электроприборов и оборудования.

Термин «заземление» появился от определения земли, почвы или грунта, в которые отводятся опасные токи. Защитная система, выполняющая функцию земли, состоит из нескольких частей:

  • в начале сети расположен корпус заземляющего элемента, выходящий из контактной точки;
  • в конце присутствует элемент ЗУ, который погружают в землю.

Изображение демонстрирует устройство заземления, применимое для жилых объектов и помещений.

Стандартная техническая документация определяет заземление, как специально организованную систему корпусов из металла, которыми оснащены агрегаты, и заземляющего контура. Согласно особенностям исполнения заземления, его можно назвать преднамеренным электрическим контактом с грунтом, целью которого является защита оборудования.

Подключение заземления выполняется с учетом действующих стандартов. Основные требования по ПУЭ, которые предъявляются к ЗУ:

  1. Заземляющее устройство, дополненное набором проводников и прутьев из металла, должно эффективно выполнять функцию отвода опасных токов в грунт.
  2. При подключении электрооборудования необходимо заземлить все элементы, в том числе створки щитков.
  3. Величина суммарного переходного сопротивления контактов ЗУ не превышает 4-30 Ом.
  4. Система выравнивания потенциалов обязательно применяется в процессе монтажа заземления для устранения неравномерности распределения напряжений.

Основным назначением заземляющих устройств является обеспечение безопасного режима работы людей с электрооборудованием. Поэтому перед запуском техники заземление тестируется на эффективность и надежность.

Консультации по выполнению всех типов работ

Что такое фаза и ноль в розетке?

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Ноль и фаза в старых розетках

Чтобы подключить старую розетку, используют два проводника. Одни из них синего цвета (рабочий нулевой проводник). По этому проводу идет ток от источника электричества к бытовому прибору. Если взяться за токоведущий провод, но не дотрагиваться до второго провода, удара током не произойдет.

Второй провод в розетке — фазный. Он бывает самых разных цветов, в том числе синим, зелено-желтым или голубым.

Обратите внимание! Любое напряжение, превышающее 50 вольт, опасно для жизни.

Простое объяснение

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов, чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

Читать еще:  Короткие замыкания и их классификация

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:


Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!

Фаза и ноль в современной розетке

В устройствах современного типа есть три провода. Фаза бывает любого цвета. Помимо фазы и нуля имеется еще один провод (защитный нулевой). Цвет этого проводника — зеленый или желтый.

Через фазу подается напряжение. Ноль используется для защитного зануления. Третий провод нужен как дополнительная защита — для забора лишнего тока во время замыкания. Ток перенаправляется в землю или в обратную сторону — к источнику электричества.

Обратите внимание! Не имеет практического значения, справа или слева расположены фаза и ноль. Однако чаще всего фаза расположена слева, а ноль — справа.

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

Бытовой ремонт №1

Выберите надежных мастеров без посредников и сэкономьте до 40%!

  1. Заполните заявку
  2. Получите предложения с ценами от мастеров
  3. Выберите исполнителей по цене и отзывам

Разместите задание и узнайте цены

  • Мелкий бытовой ремонт
  • Ремонт квартир
  • Статьи
  • Электрика

Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как «ноль» и «фаза».

Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.

Выделяют три обозначения проводов:

  • фаза
  • ноль
  • заземление

Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» — «фазные провода», а под «заземлением» — «защитный ноль».

Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.

В реальности способов распознания проводов не так уж и много. А безопасных – еще меньше. Поэтому чаще всего определяют кабели по цвету.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.

Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Самостоятельное определение фазы и ноля при помощи подручных средств

Специалисты рекомендуют для облегчения определения проводов начинать именно с распознавания фазы. Этот способ можно использовать совместно с предыдущим (по цвету).

Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.

Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор. Он сигнализирует о наличии сопротивления. Значит, проверяемый провод является фазным.

Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.

Метод определения фазы и ноля при помощи контрольной лампы

Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью.

Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой. Теперь для определения необходимо поочередно, по цветам присоединять провода.

Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух – фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод – фаза, а другой – ноль.

Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector