400volt.ru

Домашнему электрику
24 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерение сопротивления контура заземления

Как измерить сопротивление контура заземления – обзор методик

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

Безэлектродный способ

Этот метод является наиболее современным и позволяет измерять сопротивление контура, не прибегая к размыканию заземляющих стержней и установке дополнительных заземляющих электродов. В связи с этим условием, метод имеет ряд дополнительных преимуществ:

  • возможность производить замеры в полевых условиях, в тех местах, где невозможно применить другие методы измерения сопротивления;
  • экономия времени и средств для выполнения работ.

Безэлектродный метод может применяться, если используются двое измерительных токовых клещей. Например, это могут быть современные тестеры типа Fluke 163. Клещи располагают вокруг заземляющего электрода или соединительного кабеля. Клещами при этом измеряется индуцируемое напряжение. Его амплитуда фиксируется вторыми клещами.

Тестер автоматически определяет сопротивление контура заземления для данного соединения.

Периодичность измерений

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать:

Как измерить сопротивление контура заземления: обзор методов практических измерений

Главной функцией контура заземления является выравнивание потенциала определенных частей электроустановок с потенциалом земли. Измерение заземления помогает своевременно обнаружить все дефекты, которые повышают величину переходного сопротивления. Измерение сопротивления контура заземления традиционно проводят с помощью двух основных методов:

  • Амперметра-вольтметра.
  • Компенсационный метод.

В процессе выполнения измерений обязательно учитывают следующие параметры: величина погрешности и схема подключения измерительных приборов, физико-химический состав грунта в месте проведения измерений.

Прибор для измерения сопротивления заземления компенсационным методом комплектуется основным и вспомогательным электродами, которые устанавливают в грунт с разносом порядка двадцати метров. Контактный щуп подключают непосредственно к измеряемому контуру заземления. Измерительный прибор генерирует переменную электродвижущую силу, которая проходит через замкнутую цепь образованной измерительным трансформатором, проводами, электродами и грунтом. В обмотке измерительного трансформатора наводится ток, который он передает на регулируемый реостат, что позволяет найти баланс между первичным и вторичным напряжением. Полученное таким образом значение сопротивления будет соответствовать сопротивлению контура заземления.

Замеры сопротивления заземления этим методом проводят с использованием следующих приборов и специальных приспособлений: амперметр, вольтметр, вспомогательные электроды. Рабочий ток в этом случае протекает через измеряемый заземлитель и дополнительный токовый электрод. Для измерения падения напряжения дополнительно применяют потенциальный электрод, который устанавливают в зоне с нулевым потенциалом. Подачу измерительного тока осуществляют от измерительного трансформатора, который обеспечивает высокую стабильность параметров. Измерение сопротивления заземления выполняют с помощью закона Ома по измеренным значениям напряжения и тока.

Электротехническая компания «ЭЛЕКОМ» предлагает выполнить точное измерение сопротивления заземления в сжатые сроки. Наш протокол измерения сопротивления заземляющего контура действителен на всей территории России.

Как измерить сопротивление заземления

Защитное заземление существенно повышает безопасность людей, проживающих в квартире или частном доме, а также работников предприятий, связанных с электроустановками и оборудованием. Данные системы разрабатываются и создаются квалифицированными специалистами, а в определенных условиях могут быть устроены и собственными силами. Чаще всего приходится решать задачу, как измерить сопротивление заземления, поскольку от этого параметра во многом зависит работоспособность всей системы. Его величина не должна превышать установленного максимального предела, определяемого Правилами устройства электроустановок, в противном случае защита не сможет в полной мере выполнять свои функции.

  1. Как работают заземляющие системы
  2. Для чего нужны проверки заземления
  3. Общие правила проведения замеров сопротивления
  4. Измерения амперметром и вольтметром
  5. Как проверить заземление в домашних розетках

Как работают заземляющие системы

Действие защитных заземляющих систем основано на свойстве электрического тока, в соответствии с которым он стремится течь по проводникам, обладающим минимальным сопротивлением. Человеческое тело относится к категории хороших проводников, его сопротивление условно считается 1000 Ом. Следовательно, для того чтобы ток уходил в сторону заземления, его сопротивление должно быть намного меньше, чем у человека. В соответствии с ПУЭ данное значение не превышает 4 Ом.

В случае неисправности какого-либо электрического прибора, например, из-за пробоя изоляции, на его корпус попадает ток, то есть, в этом месте появляется потенциал. В случае касания рукой этой части, ток пойдет в землю по направлению от руки-через тело-в сторону ноги. В таких случаях человек подвергается смертельной опасности, поскольку даже 100 мА могут привести к необратимым процессам. Установка защитного заземления, измеряемого в дальнейшем, дает возможность максимально снизить вероятность негативных последствий.

Каждый современный электрический прибор оборудуется внутренним заземлением, когда отдельный контакт вилки соединяется с корпусом. При включении такого прибора в розетку, получается соединение с общей системой заземления. В случае какого-то нарушения или повреждения, ток утечки буде уходить в землю через заземляющий провод с небольшим сопротивлением. Поэтому замеры сопротивления имеют большое значение, позволяя контролировать его величину и не допускать выхода за пределы установленных значений.

Для чего нужны проверки заземления

Для того чтобы заземление в полной мере выполняло свои функции, необходимо поддерживать исправность заземляющего контура. С этой целью выполняются периодические замеры сопротивления мультиметром, по результатам которых определяется состояние всей системы.

Если контур находится в исправном состоянии, то при возникновении аварийной ситуации ток по заземляющему проводнику будет уходить к токоотводящим электродам. Поскольку они контактируют с грунтом всей своей поверхностью, все проходящие токи быстро и равномерно уйдут в землю.

Однако, продолжительное нахождение в грунте и постоянный контакт с землей приводит к образованию на металлических поверхностях окисной пленки, постепенно переходящей в коррозию. В результате, создаются препятствия нормальному прохождению тока, сопротивление элементов конструкции возрастает. На некоторых участках ржавчина становится более ярко выраженной, в связи с наличием в этих местах химически активных веществ, постоянно контактирующих с металлом. Поэтому начинать проверку следует с определения технического состояния элементов системы.

Постепенно коррозия превращается в отдельные чешуйки, которые начинают отслаиваться от металла и препятствовать в этом месте электрическому контакту. В дальнейшем количество таких мест возрастает, вызывая увеличение сопротивления всего контура. В заземляющем устройстве наступает потеря электрической проводимости, и оно уже не в полной мере отводит в землю опасные токи. Таким образом, снижаются общие защитные свойства системы.

Установить реальное состояние контура возможно только с помощью замера сопротивления. Техническая сторона этого процесса основывается на законе Ома для участка цепи. Данная процедура проводится с помощью источника напряжения с заранее известным точным значением. После того как будет измерена сила тока, можно легко определить сопротивление. На практике все не так просто, как в теории, поскольку существуют определенные методики и правила замеров, которые требуют точного соблюдения.

Общие правила проведения замеров сопротивления

Стандартная проверка заземления включает в себя следующие методы:

  • Визуально проверяются болтовые и сварные соединения.
  • Проводятся замеры сопротивления контура заземления мультиметром.
  • Проверяется удельное сопротивление грунта.

Все измерения выполняются с помощью специальных приборов. Рекомендуется пользоваться мегомметрами, которые больше всего подходят для этих целей. Существует специальный прибор М-416 переносного типа, работающий на основе компенсационного метода с использованием потенциального электрода и вспомогательного заземлителя. Нижний и верхний пределы измерений составляют 0,1-1000 Ом, температурный диапазон – от минус 25 до плюс 60 С. Питание прибора осуществляется тремя батарейками по 1,5В.

Измерение сопротивления заземления осуществляется в следующем порядке:

  • Прибор нужно установить на ровную горизонтальную поверхность и откалибровать. С этой целью в режиме контроля нажимается красная кнопка, затем она удерживается, а стрелка устанавливается в нулевое положение. Измерительное устройство нужно расположить максимально близко к заземлителю, поскольку соединительные провода сами обладают некоторым сопротивлением.
  • Перед тем как проверить сопротивление, выбирается требуемая схема подключения. Она может быть трех- или четырехзажимной, обозначенной на крышке прибора.
  • В землю забивается стержень зонда и вспомогательный электрод на глубину не ниже 50 см. Грунт должен иметь естественную плотность и не быть насыпным, а удары наносятся кувалдой точными прямыми ударами.
  • Место подключения заземляющего проводника к электроду зачищается от старой краски. Сечение медных проводов составляет 1,5 мм 2 .
  • Непосредственное измерение защитных устройств начинается с выбора диапазона х1. После нажатия на красную кнопку нужно вращать ручку, чтобы установить стрелку на нулевое значение. Большие значения сопротивлений измеряются в соответствующих диапазонах х5 или х20. Для замеров заземления вполне достаточно диапазона х1, который и выдаст требуемое сопротивление на шкале прибора. Измерения должны выполняться при определенной погоде с максимальной плотностью грунта.

Аналогичные замеры проводятся и в зимнее время при сильных морозах при сильно замороженном грунте. Не рекомендуется измерять сопротивление при влажной погоде, поскольку полученные данные будут сильно искажаться.

Измерения амперметром и вольтметром

Во время проведения замеров оценивается контактная поверхность контура, поскольку именно она плотно соприкасается с землей. Для того что бы измерить заземление, на расстоянии примерно 20 м от защитного устройства в грунт забиваются основной и дополнительный электроды. Затем к ним подается переменный ток со стабильными показателями. В результате, образуется электрическая цепь, состоящая из источника напряжения, проводов и электродов, по которой будет протекать ток. Его величина измеряется амперметром, а не мультиметром.

Читать еще:  Высота установки розеток и выключателей от пола

Поверхность заземляющего контура и контакт основного электрода перед тем, как их померить тщательно очищаются от металла, после чего к ним подключается вольтметр и на этом участке измеряется падение напряжения. Полученное значение следует разделить на силу тока, измеренную амперметром, в результате получится сопротивление на данном участке цепи. Если требуются неточные грубые замеры заземлителей, можно вполне ограничиться этими полученными данными.

Более точные результаты получаются путем корректировки, когда из полученного значения отнимается сопротивление соединительных проводов. Одновременно учитываются диэлектрические свойства грунта и их воздействие на токи растекания внутри почвенной структуры.

Более качественно замерить сопротивление заземления могут только квалифицированные специалисты, использующие современную усовершенствованную технологию. При их выполнении применяются промышленные высокоточные метрологические приборы, а также основной и вспомогательный электроды, помещаемые в почву, как и при замерах предыдущим способом.

Они устанавливаются на одной линии, с интервалом от 10 до 20 метров, охватывая измеряемый заземляющий контур. Шина контура соединяется с измерительным зондом максимально короткими проводниками. Сам прибор для измерения через клеммы соединяется с основным и дополнительным электродами, находящимися в земле.

Подача переменной ЭДС осуществляется через вспомогательный электрод, находящийся в грунте. В эту же цепочку входит сама земля, соединительные проводники и первичная обмотка трансформатора тока, обозначенного на рисунке символами ТТ. В результате, на вторичной обмотке трансформатора возникает ток I1. С помощью специального реостата – реохорда выставляются равные напряжения, то есть, U1 = U2. Подобное равенство достигается за счет установки нулевого значения показаний измерительного устройства V, соединенного с реохордом через измерительный трансформатор ИТ.

Для расчетов сопротивления заземления RЗ применяется система уравнений, состоящая из следующих компонентов: U1 = I1 х Rз; U2 = I2 х Rаб; U1 = U2; I1 = I2. Если решить эту систему, то получится, что сопротивление заземления будет равно заземлению участка аб: Rз = Rаб. Величина Rаб определяется стрелкой, которая подвижной частью ручки устанавливается на неподвижной шкале. После этого можно легко найти сопротивление заземления.

Как проверить заземление в домашних розетках

После покупки жилья нередко оказывается, что все электромонтажные работы уже выполнены, и возникает проблема проверки заземления в розетках. Начинать проверку до измерения сопротивления заземления рекомендуется с визуального осмотра. Нужно обесточить квартиру и разобрать любую из розеток. Она должна быть оборудована необходимой клеммой с подключением заземлительного проводника желто-зеленого цвета. Если же в наличии только два провода коричневого и синего цвета (фаза и ноль), это значит, что заземление отсутствует.

Однако присутствие третьего проводника еще не означает, что заземление исправно и может полностью выполнять свои функции. Поэтому следует выполнить специальную проверку мультиметром. Все действия производятся в следующем порядке:

  • Вводный автомат нужно включить, чтобы в розетках было напряжение.
  • Тестер устанавливается в режим напряжения.
  • Касаетесь щупами фазного и нулевого замеренных контактов и измеряете напряжение между ними. Если все в порядке, на табло высвечивается 220В.
  • Точно такие же действия выполняются мультиметром относительно фазного и заземляющего контактов. Показатель напряжения будет немного отличаться, но его наличие уже свидетельствует о том, что заземление есть. Когда на экране прибора цифры отсутствуют, это значит, что контура заземления нет вообще или он неисправен.

При отсутствии измерительных приборов, проверку можно выполнить подручными средствами. Самодельный тестер состоит из патрона с лампочкой, проводов и концевиков со щупами. По сути, это обычная контролька, которую используют многие электрики.

Одним щупом нужно коснуться фазного, а другим – нулевого провода. При этом лампочка загорается. Далее щуп, прикасавшийся к нулю, нужно переместить на выступающий контакт заземления. Если лампочка вновь загорится, следовательно, защитная система находится в рабочем состоянии. Слабый свет указывает на плохое состояние контура, а отсутствие свечения – на его неисправность.

Как проверить контур заземления

Способы измерения сопротивления заземления

Как измерить сопротивление мультиметром

Измерение сопротивления заземляющих устройств

Что такое заземление

Как измерить силу постоянного и переменного тока мультиметром

Можно ли замерить сопротивление заземления мультиметром и как это правильно сделать?

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.

Наглядно этот способ показан на видео:

О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:

  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

Читать еще:  Люминесцентные лампы

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм 2 . Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм 2 .
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжениемДля источников с трёхфазным напряжениемВеличина сопротивления заземления
127 В220 В8 Ом
220 В380 В4 Ом
380 В660 В2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Измерение сопротивления заземления классическими трёх- и четырёхпроводным методами

Когда идёт речь о вопросах безопасности людей предпочтительнее использовать методики измерений, хорошо зарекомендовавшие себя на протяжении десятилетий. Применительно к заземлению таким методом является измерение сопротивления с помощью комбинации амперметра и вольтметра (рекомендуемый ГОСТ Р 50571.16-2007). Иногда такой метод называют «трёхпроводным» (или «трёхзажимным»). Существует и более точная его модификация, именуемая «четырёхпроводным» («четырёхзажимным») методом. Как правило, оба метода могут быть реализованы в одном измерительном приборе.

Измерение сопротивления заземления по методу амперметра-вольтметра

При проведении измерений данным методом заземление отключается от электроустановки. На расстоянии не менее 20 м от исследуемого заземления в землю вкапывается потенциальный штырь. На расстоянии не менее 40 м от исследуемого заземления вкапывают токовый штырь. Штыри и заземление должны быть расположены на одной линии. Конкретные рекомендации по расстояниям между заземлением и штырями могут отличаться в зависимости от типа заземления и модели применяемой измерительной аппаратуры. Как правило, такие рекомендации указываются в инструкции к измерительной установке.

На контур, образованный исследуемым заземлением, токовым штырем и амперметром, через трансформатор передается переменный ток. В современных приборах это обычно не синусоида с частотой 50 Гц, а меандр с частотой порядка 100 — 200 Гц. Тем самым проверяется работоспособность заземления на гармониках высшего порядка и удается частично сократить влияние помех. При помощи вольтметра измеряется напряжение между заземлением и потенциальным штырем. Далее на основе закона Ома вычисляется сопротивление заземления по формуле:

R = U/I,
где U – напряжение между заземлением и потенциальным штырем, а I – сила тока в контуре, образованном заземлением, токовым штырем, трансформатором и амперметром.

Общая проблема классических методов измерения сопротивления заземления — влияние блуждающих токов в почве.

Метод амперметра-вольтметра на практике имеет две разновидности: трёхпроводный и четырёхпроводный методы, о которых и пойдет далее речь.

Трёхпроводный метод

Обозначим клеммы для измерения напряжения как П1 и П2, а клеммы для измерения тока — как T1 и T2. В реально существующих измерительных приборах эти клеммы могут иметь иные обозначения.

Схема измерения трёхпроводным методом

При трёхпроводном методе клеммы П1 и T1 соединяются перемычкой и подключаются одним проводом к исследуемому заземлению. Клемма П2 соединяется проводом с потенциальным штырем, а клемма П1 — с токовым штырем.

Преимуществом трёхпроводного метода является меньшее количество проводов. Недостатком — сильное влияние сопротивления провода, идущего к заземлению, на результаты измерения. Поэтому, обычно, трёхпроводный метод применяется для измерения сопротивления заземления, значение которого заведомо выше 5 Ом.

Четырёхпроводный метод

Когда к точности измерений предъявляются более высокие требования, используется четырёхпроводный метод. При нем к исследуемому заземлению идут раздельные провода от клемм П1 и T1, которые соединяются только непосредственно на клеммах заземления.

Схема измерений четырёхпроводным методом

Через провод, который идет к T1, течет ток. Образующаяся при этом разность напряжений на концах провода вносит погрешность в измерения, характерные для трёхпроводного метода. Но при четырёхпроводном методе точка измерения напряжения (на клеммах заземления) соединена с измерительным прибором отдельным проводом. По этому проводу течет пренебрежимо малый ток (не более единиц миллиампер), так что его сопротивление практически не вносит погрешности в измерения.

Повышение точности измерений

Классический способ измерения сопротивления заземления чувствителен к неравномерности свойств почвы в разных местах. Поэтому для повышения точности измерения рекомендуется несколько раз поменять расположение потенциального штыря с шагом, примерно равным 10% от его номинального расстояния до заземления. Разброс измеренных значений не должен быть больше 5%. Если он больше, то расстояние между исследуемым заземлением и штырями увеличивают в 1,5 раза или меняют направление линии, по которой расставлены штыри.

Выбор измерителя сопротивления заземления

До сих пор в литературе для классического метода измерения сопротивления рекомендуются приборы еще советской разработки. Но они уже не соответствуют современным реалиям, ведь электрооборудования в наших домах с тех пор стало намного больше. Появились новые устройства (например, базовые станции мобильной связи), предъявляющие особые требования к заземлению. Поэтому есть смысл обратиться к продукции ведущих мировых брендов. Но и здесь не все так просто — цены зачастую «кусаются», да и могут быть расхождения в отечественных и зарубежных нормах.

Оптимальным вариантом представляется измерительная аппаратура, выпущенная в Китае на основе самых современных технологий, но по спецификациям и под локальным брендом российской компании. Например, ЖГ-4300 (аббревиатура расшифровывается как «Железный Гарри»). Это устройство позволяет измерять сопротивление заземления в пределах от 0,05 Ом до 20,9 кОм. Доступно измерение по двух- трёх- и четырёхпроводному методам. Напряжение на клеммах не превышает 10 В, что позволяет проводить измерения с высоким уровнем электробезопасности. Прибор не просто соответствует российским нормам, он включен в Государственный реестр средств измерений. При этом цена раза в 3 ниже, чем у аналогов от известных зарубежных брендов.

Другие способы измерений

Более простым в использовании, но при этом менее точным является двухпроводный метод измерения сопротивления заземления. Он позволяет быстро получить оценку сопротивления, что бывает ценным, например, при проведении ремонтных работ. Об этом методе рассказывается в отдельной статье (ссылка).

Дальнейшим развитием классического метода измерения стал так называемый компенсационный метод. Он позволяет чисто аналоговыми способами отстроиться от помех, вызванных блуждающими токами. Недостатком данного метода является сложность настройки прибора и более высокие требования к квалификации оператора, поэтому большой популярности он не завоевал.

Также существует семейство безэлектродных методов измерения, позволяющих не отключать заземление от электроустановки. Они основаны на использовании токовых клещей. Метод, основанный на применении двух клещей также относится к рекомендованным ГОСТ Р 50571.16-2007. Недостатком такого метода является то, что он может напрямую применяться только в системах ТТ и системах TN с ячеистым заземлением. Для обычных систем TN потребуется кратковременная установка перемычки между нейтралью и заземлением, что потенциально представляет угрозу электробезопасности, так что питание во всем здании, где установлено заземление, придется на время измерений отключить.

Выводы

И в цифровую эпоху классический метод вольтметра-амперметра является основным для измерения сопротивления заземлений. Накоплен большой опыт его применения, поэтому его можно считать надежным. Цифровые технологии позволяют мгновенно вычислить значение сопротивления и сразу увидеть результат на дисплее измерительного прибора. Кроме этого, с помощью современных технологий удается в значительной степени подавлять помехи при измерениях. Благодаря этому точность измерений может быть доведена до 1 — 2%, что позволяет классическим методам успешно конкурировать с методами, основанными на использовании токовых клещей, погрешность у которых заметно выше.

Методика проведения и оформление результатов проверки заземления

Система заземления представляет собой соединение электрического оборудования с грунтом для отвода тока. Заземлительные устройства обеспечивают защиту обитателей здания и находящегося в нем имущества от разрушительного воздействия электричества. Чтобы удостовериться в необходимой функциональности системы, проводится периодическая проверка заземления.

Зачем замерять сопротивление

Измерения необходимы для определения величины сопротивления заземлительного контура. Также измеряют показатель сопротивления изоляционного слоя. Показатели должны находиться в рамках нормативов, разработанных контролирующими органами. В случае надобности сопротивление заземляющего устройства уменьшается увеличением поверхности контакта или улучшением общей проводимости среды. Для достижения нужного результата увеличивают число электродов или создают соленую среду в почве вокруг заземлителя.

Типы заземления

Существует два типа заземления:

  1. Предотвращение последствий от ударов молнии. Заземление молниеприемниками для отвода тока по металлической конструкции в землю.
  2. Защитное заземление корпусов электробытовой техники или не токопроводящих участков электроустановок. Предотвращает поражение электричеством при случайном касании к элементам, не предназначенным для пропускания тока.

Электричество на электроустановках, где не должно появляться напряжение, возникает в таких ситуациях:

  • статическое электричество;
  • наведенное напряжение;
  • вынос потенциала;
  • электрический заряд.

Система заземления представляет собой контур, созданный из металлических прутьев, закопанных в грунт, вместе с подключенными к нему проводящими элементами. Точкой заземления называют место стыковки с заземляющим устройством проводника, идущего от защищаемой техники.

Читать еще:  Особенности обозначение фазы и нуля

Заземлительная система подразумевает контакт устройства заземления с корпусами электробытовой техники. Причем заземление не работает до тех пор, пока по любой причине не возникнет потенциал. В исправной цепи не появляются никакие виды токов за исключением фоновых. Основной причиной появления напряжения является нарушение изоляционного слоя на оборудовании или повреждение проводящих элементов. При возникновении потенциала происходит его перенаправление в грунт посредством заземляющего контура.

Заземлительная система уменьшает напряжение на нетоковедущих металлических участках до приемлемого (безопасного для живых существ) уровня. В случае если целостность контура по каким-либо причинам нарушена, напряжение на нетоковедущих элементах не снижается, а потому представляет серьезную опасность для человека и домашних животных.

Факторы учета сопротивления

Для тестирования соответствия заземляющего устройства требованиям нормативов осуществляется замер сопротивления растеканию тока Rз. В идеале данный показатель должен быть равен нулю. Однако в реальности эта цифра недостижима.

Величина (Rз) включает в себя несколько компонентов:

  1. Сопротивление материала, установленного под землей электрода, а также сопротивление на контакте металла с проводником. Однако этот показатель не столь важен из-за отличной проводимости используемых материалов (сталь с напылением меди или же чистая медь). Показатель игнорируется только в случае качественного соединения с проводником.
  2. Сопротивление между почвой и электродом. Показатель игнорируют, если электрод плотно установлен, а контакт не покрашен или не покрыт диэлектриком. Однако с течением времени металл ржавеет, и его проводимость уменьшается. Поэтому следует использовать покрытые медью стержни или делать замеры сопротивления растеканию. Для уменьшения интенсивности коррозии сварочные швы лакируют.

  1. Сопротивление грунта. Считается самым важным фактором. Особое значение придается близлежащим слоям почвы. По мере удаления слоев сопротивление уменьшается. На определенном расстоянии сопротивление становится нулевым.
  2. Неоднородность электрических характеристик грунта с трудом поддается учету. Исходя из этого замеряют фактический Rз. Для одиночной простой заземлительной конструкции определяющее значение имеют поверхностные слои земли, а для контурной — глубинные.

Объект испытания

Проверочные действия осуществляются в отношении заземлительных устройств, выполненных как одиночные электроды или контуры. К объектам проверки не относятся PEN-проводники и PE-проводники, включенные отдельными жилами в кабели.

Заземлительные устройства создаются в одном из двух исполнений:

  1. Горизонтальное. В этом случае полосы располагаются по дну траншеи.
  2. Вертикальное. Заземлительный контур представляет собой забитые в землю и соединенные между собой полосы или трубы. Стержни располагают в грунте на глубине, превышающей длину самих металлических изделий. Чаще всего контур по своей форме создается в виде треугольника.

Замена элементов системы осуществляется при ржавлении более 50% поверхности. Проверка на коррозию на электроустановках проводится выборочно там, где наиболее заметны ее проявления. При проведении проверочных мероприятий тестируют заземление нейтралей. На высотных линиях проверяют по крайней мере 2% от имеющихся опор. Предпочтительные объекты проверок — участки заземления, находящиеся в максимально агрессивных средах.

В таблице внизу представления показатели Rз, присущие разным видам заземлителей.

Проведение замеров

Метод амперметра-вольтметра

Чтобы провести замеры, создают электрическую цепочку, по которой ток протекает через проверяемое заземлительное устройство и токовый проводник (его также именуют вспомогательным электродом). В схеме присутствует еще и потенциальный электрод, задача которого состоит в измерении падения напряжения при протекании тока через заземлитель. Потенциальный проводник находится на участке с нулевым потенциалом — на равном удалении от вспомогательного электрода и проверяемой заземлительной системы.

Для измерений сопротивления применяют закон Ома (формула R=U/I). С помощью данной методики чаще всего определяют сопротивление в условиях частного дома. Для получения необходимого тока используют трансформатор для сварочных работ или любое другое оборудование, где отсутствует электрическая связь между вторичной и первичной обмоткой.

Использование специальной техники

В домашних условиях редко пользуются дорогостоящим многофункциональным мультиметром. Чаще всего применяются аналоговые приборы:

  • МС-08;
  • Ф4103-М-1;
  • М-416;
  • ИСЗ-2016.


Один из самых распространенных приборов для проверки сопротивления — МС-08. Для измерений устанавливают два электрода на 25-метровом расстоянии от заземлительного устройства. Ток в цепочке образуется под действием генератора, вращаемого вручную с помощью редуктора. В результате задействования схемы и подключения прибора происходит компенсация сопротивления вспомогательных заземлителей. Если этого не случается, почва возле дополнительного заземлительного устройства искусственно увлажняется. Замеры осуществляют в различных диапазонах до тех пор, пока тестер не покажет значимых показателей (причем они не должны разниться после окончательной установки).

Измерительный прибор М-416 комфортен в использовании благодаря малому весу и шкале, где фиксируются полученные данные. М-416 включает в себя полупроводники с автономным электропитанием.

Пример использования прибора М-416:

  1. Проверяем наличие питания у прибора. В устройстве должны находиться три батарейки — каждая по 1,5 вольта.
  2. Устанавливаем прибор на ровную поверхность.
  3. Проводим калибровку оборудования. Настраиваем М-416 на контроль и, нажимая на красную кнопку, устанавливаем стрелку на нулевое положение.
  4. Выбираем трехзажимную схему для проведения замера.
  5. Вспомогательный проводник и стержень зонда вкапываем в землю по меньшей мере на 50 сантиметров.
  6. Соединяем провода с электродом и стержнем зонда согласно схеме.
  7. Переключатель ставим в одну из позиций «X1». Удерживая клавишу, прокручиваем ручку до тех пор, пока стрелка на шкале не достигнет нуля. Результат умножаем на ранее вычисленный множитель. Итоговое значение является искомым.

Работа токовыми клещами

Контурное сопротивление определяют также с помощью токовых клещей. Их основное достоинство том, что не нужно отключать заземлитель и использовать вспомогательные проводники.

Через проводник заземления, в роли которого выступает вторичная обмотка, проходит переменный ток. Протеканию тока способствует первичная трансформаторная обмотка, находящаяся в измерительной головке устройства. Чтобы определить показатель сопротивления, делим данные ЭДС вторичной обмотки на величину тока, полученную при измерении клещами.

В качестве примера токовых клещей приведем тестер СА 6415. Он оснащен жидкокристаллическим монитором. Для измерения сопротивления не нужны дополнительные проводники. Также отсутствует потребность в отключении PE-проводника от электродов.

Замер сопротивления изоляции

Чтобы измерить сопротивление изоляции, используют специальный прибор — мегомметр. Устройство состоит из нескольких элементов:

  • генератор непрерывного тока, оснащенный ручным приводом;
  • добавочные сопротивления;
  • магнитоэлектрический логометр.

До начала проверочных работ следует удостовериться, что объект отключен от электропитания. Удаляем с изоляционного слоя пыль и грязь. После этого проводим замер в течение приблизительно 3 минут. В результате получаем данные по остаточным зарядам.

К электроцепи или оборудованию мегомметр подключаем отдельными проводниками. Изоляция отличается высоким сопротивлением. Его уровень чаще всего превышает 100 мегаом.

Обратите внимание! Замер сопротивления изоляции проводится после того, как стрелка займет устойчивую позицию.

Периодичность измерений

Определение периодичности замеров сопротивления заземлительного устройства осуществляется в соответствии с требованиями ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Согласно регламенту, проверки производят каждые 6 лет. Также осуществляются регулярные проверки исправности контура. Визуальный осмотр наружных частей и частичное откапывание внутренних элементов контура делают по установленному на объекте графику, но не реже одного раза в год.

Указанные сроки относятся к предприятиям. Регулярность проверок в частных домах оставляется на усмотрение владельцев. Специалисты не рекомендуют пренебрегать проверочными мероприятиями, поскольку от этого зависит безопасность проживания в доме.

В теплую и сухую погоду результаты испытаний более достоверны. А вот во влажной среде они будут не столь точными, поскольку растекаемость тока приводит к повышению проводимости.

Нормативные результаты испытаний указаны в таблице ниже.

Оформление результатов проверки

Если решено поручить проверку специалистам, следует обратиться в специализированную электротехническую лабораторию. Проверку выполнят квалифицированные сотрудники. По результатам работы будет выдан протокол измерения сопротивления.

Протокол представляет собой бланк, в котором указаны такие данные:

  • место проведения испытаний;
  • название проверяемого объекта;
  • назначение заземлительного устройства;
  • схема установки заземлителей и их соединений;
  • расстояние между электродами.

Кроме того, в протоколе указывается сезонный поправочный коэффициент и методика, в соответствии с которой осуществлялось измерение. Для составления протокола необходим паспорт объекта и акт на скрытые работы.

Обратите внимание! Рекомендуется включать в протокол данные о приборе, с помощью которого измерялось сопротивление. Информация должна включать тип устройства, его заводской номер и другие важные показатели. Результаты измерений вносят в паспорт заземлителя.

Отдельно составляется протокол испытания переходных сопротивлений. Данное понятие (переходное сопротивление также называют металлосвязью) представляет собой потенциальные потери на пути протекания тока. Они происходят в связи с наличием на контуре каких-либо соединений, в том числе сварочных, болтовых и прочих. Испытательные работы проводят с помощью специального тестера — микроомметра.

Правом проведения официальных испытаний и выдачи протокола обладает только сертифицированная органом стандартизации испытательная лаборатория. После выдачи акта система считается пригодной к эксплуатации.

Измерение сопротивления растеканию тока заземляющего устройства

Измерение сопротивления растеканию тока заземляющего устройства выполняется с целью проверки элементов имеющихся на объекте заземляющих устройств на соответствие проектным техническим условиям и требованиям нормативной документации. Такие работы выполняются при проведении всех видов испытаний электрооборудования.

Средства и метод измерения сопротивления заземлителей

Для проведения данных работ чаще всего применяется измерители сопротивления заземлителя Ф4103-М1, М416 или ИС-20. Замеры проводится по компенсационному методу, где применяются вспомогательные заземлители и потенциальные электроды-штыри (зонды).

Геометрические размеры имеющихся заземлителей определяются методом прямых измерений. Их состояние оценивается визуально после вскрытия контура. Для учёта текущей проводимости грунта вводятся поправочные коэффициенты.

Проведение измерений по компенсационным методам

Такие диагностические работы выполняются по трех- или четырехпроводному методу.

При применении четырехроводного метода используются четыре электрода-штыря (два токовых и два потенциальных), установленных через определенное расстояние (разнос).

Применение такого количества электродов исключает влияние на результат измерений переходного сопротивления в местах подключения измерительных кабелей, а также их сопротивление. Это особенно важно в тех случаях, когда измеряемое сопротивление является малой величиной.

При трехпроводном методе используется только один потенциальный и два токовых штыря. В этом случае измеренная величина заземляющего устройства будет включать в себя величину сопротивления измерительного кабеля потенциального электрода-штыря.

Во время проведения измерений отсоединение грозозащитных тросов оболочек кабелей и других естественных заземлителей не требуется. Измерительные кабеля не должны располагаться рядом с массивными металлоконструкциями и находиться параллельно линии электропередач.

Другие методы измерений

Для определения величины сопротивления заземлителей существуют другие методы:

  • мостовой (практически не применяется);
  • определение сопротивления измерением тока, протекающего через заземление и падения напряжения на нем (испытание способом вольтметра-амперметра с одно- и двухлучевой схемой расположения вспомогательных электродов или применением измерителей МС – 07 или МС-08).

Оформление результатов

Измерение сопротивления растеканию тока заземляющего устройства, результаты обработки данных и вычислений оформляется соответствующим протоколом. В этом протоколе обязательно указываются: схема расположения заземляющих электродов, план контура заземления, метод определения сопротивления.

Если по результатам изменение сопротивления заземляющего устройства велико, намечаются пути снижения этого сопротивления (обработка грунта солями, добавления в него влагозадерживаюших веществ, увлажнение грунта, изменение заземляющего контура и другие).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector