400volt.ru

Домашнему электрику
28 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный электродвигатель с фазным ротором

Описание фазного ротора

Время на чтение:

Асинхронный двигатель с фазным ротором широко применяется как в быту, так и на производстве. Ниже рассмотрено, что из себя представляет АД, каковы его конструкция и принцип функционирования, какую схему использовать для подключения и пуска.

Что такое АД с фазным ротором

Асинхронную машину изобрели в 1888 г., когда практически одновременно Н. Тесла запатентовал схему электромотора, а Г. Феррарис написал теоретическую статью о принципах функционирования АД. Год спустя похожая установка была изобретена и русским ученым О. Доливо-Добровольским, в которой использовалась трехфазная обмотка.

Эти изобретения стали революционными в мировой промышленности, и по сей день многофазные АД применяются в большинстве сфер жизни: от бытовых задач до массивных производств. Революция произошла благодаря конструкции мотора, обеспечивающей большую эффективность работы. Отныне все действия на производствах осуществлялись быстрее и с меньшими затратами.

АД с фазным ротором

К сведению! Именно прототип Доливо-Добровольского дал начало всем существующим сегодня АД.

Технические параметры

Асинхронная машина обладает следующими техническими характеристиками:

  • габариты и мощность. Они должны равняться приведенным в техрегламенте;
  • степень защиты. При эксплуатации в разных условиях требуется различный уровень защиты. Машина может работать на улице или в помещениях, в зависимости от этого требуется определенный уровень защиты;
  • хорошая степень изоляции. Нужно, чтобы мотор был устойчив нагреванию;
  • вид. Существуют различные типы асинхронных машин, предназначенные для эксплуатации в экстремальных погодных условиях, при очень низких или высоких температурах (в холодной местности на севере или на жаркой территории на юге). Необходимо, чтобы устройство двигателя соответствовало окружающим условиям;
  • абсолютное соответствие режимам работы (на практике и в теории);
  • система охлаждения, работающая согласно конкретному режиму;
  • громкость работы при холостом включении не должна превышать второй класс.

Как работает

Принцип функционирования электродвигателя с фазным ротором основан на магнитном поле, которое вращается с угловой скоростью, зависящей от частоты сети и пар полюсов обмотки статора. Поле образовывается при соединении с сетью трехфазной намотки. Как правило, асинхронный мотор имеет намотку во много фаз (обычно три фазы), но существуют и однофазные.

При пересечении обмоток магнитное поле в соответствии с правилом электромагнитной индукции индуктирует электродвижущую силу в этих намотках. Если намотка ротора замкнута, ее электродвижущая сила вводит в электроцепи ротора энергию. Образуется электромагнитный момент.

Мотор назвали асинхронным из-за того, что угловая скорость ротора не равна угловой скорости вращения электромагнитного поля, то есть они двигаются несинхронно.

Процессы, проходящие в асинхронном электродвигателе, измеряют параметром под названием скольжение, который рассчитывается как разность угловых скоростей ротора и магнитного поля.

Обратите внимание! Скольжение бывает положительным и отрицательным в зависимости от режима функционирования электромотора.

При идеальном холостом ходе оно равняется нулю, ротор и поле крутятся с равной быстротой. Никакой электродвижущей силы не образуется, ток и электромагнитный момент нулевые. При включении двигателя скольжение равняется 1 и при идеальном ходе постепенно достигает 0. Если вращать ротор в другую сторону относительно магнитного поля (разница угловых скоростей будет больше 1), появится тормозной момент, так как электродвигатель переходит в режим противовключения.

Расчет скольжения

В соответствии со значением скольжения в ходе работы электродвигателя различают 3 режима его функционирования:

  • противовключение (скольжение стремится от 1 до бесконечности);
  • генераторный (скольжение от 0 до бесконечности);
  • двигательный (скольжение стремится от единицы до нуля).

Конструкция

Устройство трехфазного асинхронного двигателя с фазным ротором включает 2 главные детали — статор и ротор. Ротор представляет собой движущуюся часть, а статор — фиксированную. Между ними есть воздух.

Устройство асинхронного электромотора

Конструкция статора включает шихтованный магнитный провод, который запрессован в литую станину. Внутри провода есть пазы, предназначенные для вложения проводников намотки. Они представляют собой стороны мягких катушек с большим количеством витков.

К сведению! Эти катушки создают 3 фазы обмотки статора, поэтому АД называют 3-фазным. Оси катушек находятся под углом 120° относительно друг друга.

Контачат фазы обмотки разными схемами: «звездой» и «треугольником». Выбор схемы зависит от напряжения в электросети. При значении 220 В в спецификациях асинхронного электромотора используется схема «треугольник», при 220/380 В — «звезда».

Ротор является цилиндром, сложенным из круглых листов электротехнической стали. Стопка этих листов насаживается на вал. Есть 2 типа роторов, различающиеся по разновидности обмотки: фазные и короткозамкнутые. Именно фазные используются в мощных асинхронных электрических движках.

Где применяется

Большая часть всех электродвигателей, выпускающихся в производственных масштабах, являются асинхронными.

Крановый асинхронный электродвигатель

Список сфер, где применяются асинхронные моторы:

  • медицинское оборудование;
  • техника для записи звука;
  • устройства автоматики;
  • бытовые приборы.

Обратите внимание! АД применяется там, где нужны высокие мощности, но вместе с тем нет необходимости в плавном регулировании скорости вращения в больших диапазонах.

Такие электромоторы чаще всего используют в тяжелом оборудовании, к примеру, в подъемных кранах, станках, лифтах и прочих подъемниках. Проще говоря, асинхронную машину нужно подключать в тех условиях, где работа производится под нагрузкой.

Схема пуска и подключения асинхронного двигателя

Есть 2 основных схемы подключения — «звезда» и «треугольник». Часто применяется 1 тип, намотки при этом подключаются на фазное напряжение. При схеме «треугольник» их подсоединяют к линейному.

Асинхронный двигатель с фазным ротором, схемы подключения «звезда» и «треугольник»

Каждую схему используют для разных целей. Если требуется, чтобы в двигателе достигалась большая мощность на валу, но некритично, если будут просадка напряжения и высокие пусковые токи, нужно подключить обмотки «треугольником». В остальных случаях выбор схемы зависит от напряжения.

Таким образом, открытие Доливо-Добровольского сегодня сильно востребовано. АД используют во многих сферах, начиная от медицины и заканчивая бытовыми приборами. Перед применением двигателя главное — правильно выбрать схему подключения.

Устройство, принцип работы и схема подключения асинхронного двигателя с фазным ротором

Асинхронный двигатель с фазным ротором имеет очень обширную область обслуживания. АД (асинхронный двигатель) чаще применяется в управлении двигателями большой мощности. Обслуживание и управление приводов мельниц, станков, насосов, кранов, дымососа, дробилок. Асинхронный двигатель с массивным ротором даёт возможность подключения множества технических механизмов.

Характеристика асинхронного двигателя

Преимущества использования:

  • Запуск двигателя с нагрузкой, подключение к валу благодаря созданию большого момента вращения. Это обеспечивает обслуживание асинхронных двигателей с фазовым элементом любой мощности.
  • Возможность постоянной скорости вращения большой или маленькой нагрузки
  • Регулирование автоматического пуска.
  • Работа даже при перегрузке тока напряжения.
  • Простота использования.
  • Невысокая стоимость.
  • Надёжность применения.
  • Использование резисторов увеличивается стоимость, а работа двигателя усложняется,
  • Большие размеры,
  • Значение КПД меньше, чем короткозамкнутых роторов,
  • Трудное управление скоростью вращения,
  • Регулярный капитальный ремонт .

Схема подключения

При подключении к току начинают работать реле времени. Контакты размыкаются. При нажатии тумблера происходит пуск.

Чтобы подключить АД нужно правильно обозначить концы и начала обмоток фазы.

Устройство двигателя

Главными постоянными являются статор и ротор. Статор представляет собой цилиндр, состав –листы электротехнической стали, в цилиндр уложена трёхфазная обмотка. Она состоит из обмоточной проволоки. Которые соединены между собой в виде звезды или треугольника в зависимости от напряжения.

Ротор – основная вращающаяся часть двигателей. Он в зависимости от расположения может быть внешним, внутренним. Данный элемент состоит из стальных листов. Пазы сердечника наполнены алюминием, который имеет стержни, содержащие торцевые кольца. Они могут быть латунными или стальными, каждое из них изолировано слоем лака. Между трёхфазным статором и ротором образуется зазор. Регулирование размер зазора от 0,30 –0,34 мм в устройствах с небольшим напряжением, 1,0–1,6 мм в устройствах с большим постоянным электрическим напряжением. Конструкция имеет название беличья клетка. Для мощных двигателей используется медь в сердечнике. Контактор начинает действие, двигатель заводится.

Существует добавочный резистор в цепи обмотки вращающей части машины, крепится с помощью металлографитных щеток. Щетки обычно используются две, расположены на щеткодержателе. В приводах кранах и центрифугах для регулирования роботы применяется конический подвижный ротор. Асинхронные двигатели с фазным ротором незаменимы при технических требованиях мощного пускового момента. Это могут быть такие механизмы, как кран, мельница, лифт.

Схема переключения электрической цепи со звезды на треугольник

Принцип работы

В основе АД лежит вращение поля магнитов. В область обмотки трёхфазного статора поступает ток, а в фазах возникает поток магнитов, изменяемый в зависимости от скорости и частоты постоянной электрической мощности. При статорном вращении возникает электродвижущая сила.

В роторную обмотку подходит напряжение, которое совместно с постоянным магнитным потоком статора образует пуск. Он стремится направить ротор по магнитному вращению статора и при достижении превышения момента торможения, приводит к скольжению. Оно выражает отношение между частотами статорного силового поля магнитов и скоростью роторного вращения.

Чертеж режима кз

При балансе между моментами электромагнита и торможения, перемена значений остановится. Особенность эксплуатации АД – сольватация кругового движения силового поля статора и им наводящих токов в роторе. Момент вращения возникает лишь при разнице частот круговых движений магнитных полей.

Машины различают синхронные, асинхронные. Разница механизмов в их обмотке. Она образует магнитное поле.

Неподвижность ротора и замыкание обмотки приводит к короткому замыканию (кз).

Расчёт числа повторений

Возьмём m1 – процесс повторения постоянного поля магнитов и ротора. Система фазы переменного тока образуют вращение поля магнитов.

Данные расчета считаются по формуле:

f1– частота электричества$

p – количество полюсных пар каждой обмотки статора.

m2 – процесс повторения вращения ротора. Имея различное количество одновременных повторений, данная скорость частоты будет асинхронной. Определение расчёта частоты проводится по соотношению между данными:

Читать еще:  Азы математики - НОЛЬ, число 0

Асинхронный электродвигатель работает только при асинхронной частоте.

(m2 Реостатный пуск

Часто для включения двигателя безмощных пусковых моментов оказывают нужное действие реостаты. Схема реостатного способа:

Главной характеристикой метода является присоединение двигателя при пуске к реостатам. Реостаты разрываются (на чертеже К1), на них идет частично электрический ток. Что дает возможность уменьшить пусковые токи. Пусковой момент тоже снижается. Преимущество реостатного способа заключается в снижении нагрузки на механическую часть и нехватку напряжения.

Ремонт и характеристики неисправностей

Причиной ремонта могут служить внешние и внутренние причины.

Внешние причины ремонта:

  • обрыв провода или нарушение соединений с электрическим током,
  • сгорание предохранителей,
  • понижение или повышения напряжения,
  • перегруженность АД,
  • неравномерная вентиляция в зазоре.

Внутренняя поломка может возникнуть по механическим и электрическим причинам.

Механические причины ремонта:

  • неправильное регулирование зазора подшипников,
  • повреждение вала ротора,
  • расшатывание щеткодержателей,
  • возникновение глубоких выработок,
  • истощение креплений и трещины.

Электрические причины ремонта:

  • замыкания витков,
  • поломка провода в обмотках,
  • пробивание изоляции,
  • пробой пайки проводов.

Данные причины – это далеко не полный список поломок.

Асинхронный двигатель – незаменимый и важный механизм, применяемый для обслуживания быта и различных отраслей промышленности. Для практического действия АД с фазным ротором необходимо знать техническую характеристику управления, использовать его по назначению и регулярно проводить ремонт при технических осмотрах. Тогда асинхронный двигатель станет практически вечной эксплуатации.

Фазный ротор электродвигателя

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.

Конструкция фазного ротора

Фазный ротор АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название — “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.

Проверка электродвигателя с фазным ротором

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Асинхронный двигатель с фазным ротором

Асинхронный двигатель с фазным ротором – это двигатель, который можно регулировать с помощью добавления в цепь ротора добавочных сопротивлений. Обычно такие двигатели применяются при пуске с нагрузкой на валу, так как увеличение сопротивления в цепи ротора, позволяет повысить пусковой момент и уменьшить пусковые токи. Этим асинхронный двигатель с фазным ротором выгодно отличается от АД с короткозамкнутым ротором.

Статор (3) выполнен, так же как и в обычном асинхронном двигателе, он представляет из себя полый цилиндр, набранный из листов электротехнической стали, в который уложена трехфазная обмотка.

Ротор (4) по сравнению с короткозамкнутым, представляет из себя более сложную конструкцию. Он состоит из сердечника в который уложена трехфазная обмотка, аналогично обмотке статора. Отсюда название двигателя. Если двигатель двухполюсный, то обмотки ротора смещены геометрически друг относительно друга на 120. Эти обмотки соединяются с тремя контактными кольцами (2), расположенными на валу (5) ротора. Контактные кольца выполнены из латуни или стали, причем друг от друга они изолированы. С помощью нескольких металлографитовых щеток (обычно двух), которые расположены на щеткодержателе (1) и прижимаются пружинами к кольцам, в цепь вводятся добавочные сопротивления. Выводы обмоток соединяются по схеме «звезда».

Добавочное сопротивление вводится только при пуске двигателя. Причем им обычно служит ступенчатый реостат, сопротивление которого уменьшают с увеличением оборотов двигателя. Таким образом пуск двигателя осуществляется тоже ступенчато. После того, как разгон закончился и двигатель вышел на естественную механическую характеристику, обмотку ротора закорачивают. Для того, чтобы сохранить щетки и снизить потери на них, в двигателях с фазным ротором существует специальное устройство, которое поднимает щетки и замыкает кольца. Таким образом, удается повысить еще и КПД двигателя.

Добавочное сопротивление позволяет главным образом осуществить пуск двигателя под нагрузкой, работать с ним длительное время двигатель не может, так как механические характеристики слишком мягкие и работа двигателя на них нестабильна.

Читать еще:  Вводной щиток для частного дома 380в 15квт

Для того чтобы автоматизировать пуск двигателя, в обмотку ротора включают индуктивность. В момент пуска, частота тока в роторе наибольшая, а значит и индуктивное сопротивление максимально. Затем, при разгоне двигателя, частота, как и сопротивление уменьшаются, и двигатель постепенно начинает работать в обычном режиме.

За счет усложнения своей конструкции, асинхронный двигатель с фазным ротором, обладает хорошими пусковыми и регулировочными характеристиками. Но по той же причине, его стоимость возрастает приблизительно в 1.5 по сравнению с обычным АД, кроме того увеличивается масса, размеры и как правило, уменьшается надежность двигателя.

Устройство и принцип работы асинхронных двигателей с фазным ротором

Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.

  • Технические характеристики ↓
  • Устройство ↓
  • Принцип работы ↓
  • Преимущества и недостатки ↓
  • Применение ↓

Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:

  1. Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
  2. При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
  3. Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
  4. Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
  5. Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
  6. Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
  7. Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
  8. Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
  9. Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
  10. Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
  11. Параметры напряжения могут достичь значения, которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.

Технические характеристики

Основные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.

Именно они определяют главные технические характеристики и к таким параметрам относятся:

  1. Габариты и мощность двигателя, которые должны иметь показатели, соответствующие техническому регламенту.
  2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
  3. Высокая степень изоляции, которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
  4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
  5. Полное соответствие режимам функционирования.
  6. Наличие системы охлаждения, которая должна соответствовать рабочим режимам машины.
  7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.

Устройство

Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:

  1. Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
  2. Воздушный зазор разделяет оба элемента между собой.
  3. И статор, и ротор обладают специальной обмоткой.
  4. Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
  5. Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
  6. Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
  7. В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
  8. Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
  9. Катушки составляют фазы самого двигателя, к которым происходит подключение фазы от питающей электросети.
  10. Ротор состоит из вала и сердечника.
  11. Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
  12. Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
  13. Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
  14. Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.

Принцип работы

После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:

  1. На статор, обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
  2. Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
  3. Совершаемые вращения постепенно становятся быстрее скорости ротора.
  4. В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
  5. Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
  6. Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.

Преимущества и недостатки

Востребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:

  1. Значительные показатели, которых способен достигать начальный вращающий момент после запуска машины.
  2. Механические перегрузки, которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
  3. При возникновении разнообразных перегрузок в системе, двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
  4. Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
  5. Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
  6. Конструкция и устройство таких машин являются довольно простыми.
  7. Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
  8. Относительно невысокая стоимость.
  9. Обслуживание таких машин не требует значительных затрат сил и времени.

Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:

  1. Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
  2. Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

  1. Устройств автоматики и приборов из телемеханической области.
  2. Бытовых приборов.
  3. Медицинского оборудования.
  4. Оборудования, предназначенного для осуществления аудиозаписи.

Асинхронный электродвигатель с фазным ротором

Асинхронный электродвигатель – очень распространенная электрическая машина. Он прост в изготовлении и обслуживании, а из-за простоты конструкции – очень надежен. Но есть у него один недостаток – угловая скорость вращения вала неизменна и зависит от количества полюсов обмотки статора. А как быть, если в процессе работы требуется изменять частоту вращения?

Читать еще:  Принцип действия асинхронного двигателя

Необходимость регулировки оборотов в основном требуется для электродвигателей, устанавливаемых на кранах. Выполняют они там следующие основные функции:

  • перемещение крана (моста крана) по рельсам;
  • перемещение тележки крана (в перпендикулярной рельсам плоскости);
  • подъем груза.

Для перемещения моста крана могут использоваться два двигателя (на обоих концах моста). Для подъема груза могут использоваться два гака разной грузоподъемности, поднимаемые разными электродвигателями. Один гак может иметь два диапазона скоростей подъема, и тоже использовать для этого два электродвигателя.

Мостовой кран

Есть и другие механизмы, скоростью вращения которых нужно управлять: конвейеры, вентиляторы.

Еще одна причина изменять скорость вращения электродвигателя – необходимость его плавного разгона. В момент включения он потребляет ток, в несколько раз превышающий номинальный. Называется он пусковым током. Если при этом еще и нагрузка мотора тяжелая и тоже разгоняется с трудом, то время пуска двигателя увеличивается, а пусковые токи нагревают обмотку статора и могут ее вывести из строя. Да и вал электромотора, его подшипники испытывают механические нагрузки, сокращающие их ресурс.

Электродвигатели постоянного тока способны изменять скорость вращения вала. Для этого в цепи их обмоток включаются реостаты. Этот метод решения проблемы используется на электрифицированном транспорте: в трамваях, троллейбусах, электричках, метро. Но вся инфраструктура энергоснабжения этих потребителей организована особым образом, ведь у постоянного тока свои особенности. Использовать же постоянный ток на предприятиях, большинство потребителей которых работает от сети трехфазного переменного тока, не выгодно. Да и у самих электродвигателей постоянного тока недостатков хватает: сложный щеточный аппарат, уход за коллектором. Реостаты греются, а дистанционное управление несколькими реостатами сразу – сложно.

Поэтому в подобных механизмах используются асинхронные электродвигатели с фазным ротором.

  1. Принцип работы асинхронного электродвигателя с фазным ротором
  2. Плавный запуск двигателя с фазным ротором
  3. Регулировка скорости крановых электродвигателей

Принцип работы асинхронного электродвигателя с фазным ротором

Статор этого электродвигателя ничем не отличается от обычного. А вот в его ротор добавлены обмотки трех фаз, соединенные в звезду, концы которых выведены на контактные кольца. По кольцам скользят щетки, с помощью которых обмотки подключаются к электрической цепи.

Фазный ротор

Асинхронный двигатель с короткозамкнутым ротором работает так:

  • ток в обмотках статора создает вращающийся магнитный поток внутри него;
  • изменяющийся во времени магнитный поток, пересекая витки обмотки ротора, наводит в них ЭДС;
  • поскольку обмотка ротора замкнута, за счет наведенной ЭДС в ней возникает ток;
  • проводники обмотки ротора с током взаимодействуют с вращающимся полем статора, создается вращающий момент.

Особенность асинхронного двигателя с фазным ротором: ток в роторе можно изменять, подключая последовательно с его обмотками резисторы. Чем больше сопротивление резистора, тем меньше ток в роторе. С уменьшением тока уменьшается и сила взаимодействия с вращающимся полем статора. Скорость вращения падает.

Наличие резисторов в цепи ротора увеличивает объем пускорегулирующей аппаратуры двигателя. Мощность, которая рассеивается на них, возрастает с мощностью электродвигателя. Но и для небольших моторов она существенна, что приводит к громоздким конструкциям магазинов сопротивлений и необходимости обеспечивать им постоянное охлаждение. Резисторы изготавливаются из материалов, имеющих высокое удельное сопротивление. Проводники их наматываются на каркасы или монтируются на изоляторы из фарфора. Конструкция помещается в кожух с жалюзийными отверстиями для охлаждения или закрываются сеткой.

Магазин резисторов для кранового электродвигателя с фазным ротором

Не всегда возможно разместить резисторы в помещениях. На кранах они находятся непосредственно на мосту, что приводит к массовому скоплению внутри них пыли и необходимости часто проводить техническое обслуживание.

Плавная регулировка скорости электродвигателя с фазным ротором не производится. Изменение сопротивления в цепи ротора производится фиксированными ступенями. Для этого резисторы разделяются на секции, соединенные последовательно, в цепях которых устанавливаются контакторы управления. При необходимости увеличить скорость вращения контакторы шунтируют часть резисторов, уменьшая их суммарное сопротивление. Для достижения максимальной скорости вращения шунтируются все резисторы, для минимальной – не шунтируется ничего.

Асинхронный электродвигатель с фазным ротором

А теперь рассмотрим несколько примеров построения схем управления асинхронным двигателем с фазным ротором.

Плавный запуск двигателя с фазным ротором

Система плавного разгона электродвигателя с фазным ротором работает автоматически. Оператор нажимает кнопку «Пуск», дальше автоматика все делает сама.

Главный контактор подключает к трехфазному напряжению обмотку статора. Двигатель начинает вращение с минимально возможной скоростью, так как в цепь его ротора включены резисторы с максимально возможным сопротивлением.

Через фиксированную задержку, формируемую реле времени, включается первый контактор, шунтирующий первую секцию сопротивлений в цепи ротора. Скорость вращения немного возрастает. Проходит еще время, второе реле времени запускает следующий контактор. Шунтируется следующая секция сопротивлений, ток в цепи ротора возрастает, скорость вращения – увеличивается. И так далее, до полного исключения всех сопротивлений из цепи ротора. При этом электродвигатель выходит на номинальные обороты.

Схема плавного пуска асинхронного электродвигателя с фазным ротором

Число ступеней разгона выбирается из условий тяжести запуска. Разгон получается не таким уж плавным, ток в статоре возрастает ступенями. При старте и переходе на каждую последующую ступень, электродвигатель все равно потребляет пусковой ток, хоть и меньшего значения.

Этого недостатка лишены электродвигатели, для разгона которых используются жидкостные пускатели (или стартеры). В них в качестве резистора используется жидкость с высоким удельным сопротивлением. Это – дистиллированная вода с растворенной в ней специальной солью. Уменьшение сопротивления достигается за счет уменьшения расстояния между электродами, помещенными в эту жидкость. Электроды приводятся в движение небольшим электродвигателем через червячную передачу. За счет этого уменьшение сопротивления в цепи ротора и разгон электродвигателя происходят плавно.

Регулировка скорости крановых электродвигателей

Если при плавном запуске электродвигателя с фазным ротором управление переключением сопротивлений происходит автоматически, то на кране этим управляет оператор – крановщик. Для этого в его кабине размещаются органы управления – контроллеры (на старых кранах) или джойстики (на современных). Они имеют два направления движения: «вперед-назад», «влево-вправо» или «вверх-вниз», в зависимости от назначения контроллера (управление мостом, тележкой или подъемом груза соответственно). В каждом из направлений рукоятка управления проходит ряд фиксированных положений. Чем дальше положение от рукоятки от средней точки, в которой привод выключен, тем больше скорость вращения электромотора. И тем быстрее происходит перемещение механизма или подъем (опускание) груза.

Типовая схема управления электродвигателем крана

При изменении направления перемещения рукоятки управления изменяется направление вращения электродвигателя. Это происходит за счет переключения чередования фаз питания обмотки статора. Для этого две фазы меняются местами. Происходит это путем подачи напряжения на обмотку реверсивными контакторами, состоящих из двух элементов: контактора «Вперед» и контактора «Назад».

При переключении скоростей другими контакторами из цепи обмотки ротора удаляется часть резисторов. Первое положение рукоятки управления всегда включает электродвигатель с полным набором сопротивлений в цепи ротора. Крайнее положение рукоятки шунтирует все сопротивления.

Схема пуска асинхронного двигателя с фазным ротором, функции времени.

Для уменьшения пускового тока и увеличения пускового момента — в цепь ротора включают токоограничивающий резистор R, ступени которого включены в цепь не только вовремя пуска, и торможении, а также при реверсе электродвигателя с фазным ротором.

Двигатель будет разгоняться по искусственной характеристики с большим пусковым моментом и меньшим пусковым током. По мере разгона ступени резистора будут шунтироваться до полного вывода из цепи (обмотка ротора закорочена), а следовательно электродвигатель перейдёт на свою естественную характеристику. Пуск окончен.

Схема пуска двигателя с фазным ротором, функции тока.

Схема подключения двигателя с фазным ротором, функции времени.

Схема подключения двигателя фазным ротором представлена на рисунке 1. В данной схеме используется управление функции времени и двухступенчатый пусковой резистор.
Включением автоматического выключателя QF напряжение подается на управляющую и силовую цепь. Это приводит к срабатыванию реле времени КТ1, КТ2 которые размыкают свои контакты. Нажатием кнопки SB1 “ Пуск” подключается магнитный пускатель КМ3, который:
размыкает контакты:

  • КМ3.3 — снимает напряжения с реле времени КТ1, которое, после окончания выдержки времени, размыкает свои контакты КТ1.

замыкает контакты:

  • КМ3.1 в цепи статора — двигатель запускается с включенными в цепь ротора двумя ступенями резистора, так как контакторы КМ1 и КМ2 питания не получают. До истечении выдержки времени КТ1.
  • КМ3.2 — шунтирует кнопку “ Пуск” (позволяет не удерживать кнопку SB1 в нажатом положении)
  • КМ3.4 – в цепи катушек магнитных пускателей КМ1 и КМ2, но до окончания выдержки времени КТ1 пускатели КМ1 и КМ2 не получают питания. Рисунок 1.1 GIF — анимация схемы работы пуска асинхронного двигателя с фазным ротором

Для удобства просмотра — в конце статьи выложены все кадры анимации.

По истечении времени выдержки, КТ1 срабатывает и замыкает свои контакты – по катушке КМ1 протекает ток, пускатель срабатывает и шунтирует первую ступень пускового резистора R. Одновременно своими нормально замкнутыми контактами КМ1.1 обесточивает реле времени КТ2. До окончания выдержки времени КТ2 двигатель разгоняется только со второй ступенью сопротивления. После окончания выдержки резистор полностью шунтируется и двигатель переходит на свою естественную механическую характеристику. Пуск окончен.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector