400volt.ru

Домашнему электрику
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы электродвигателя

Принцип работы электродвигателей

Принцип работы электродвигателей. Основные понятия.

Магнетизм

Наиболее характерное магнитное явление — притяжение магнитом кусков железа — известно со времен глубокой древности. Ещё одной очень важной особенностью магнитов является наличие у них полюсов: северного (отрицательного) и южного (положительного). Противоположные полюса притягиваются, а одинаковые — отталкиваются друг от друга.

Магнитное поле

Магнитное поле можно условно изобразить линиями в виде магнитного потока, движущегося от северного полюса к южному. В некоторых случаях определить, где северный, а где южный полюс, достаточно сложно.

Электромагнетизм

Вокруг проводника, при пропускании по нему электрического тока, создаётся магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы для магнетизма и электромагнетизма.

Магнитное поле вокруг проводников можно усилить, если намотать их на катушку со стальным сердечником. Когда проводник намотан на катушку, все линии магнитного потока, образуемого каждым витком, сливаются и создают единое магнитное поле вокруг катушки.

Чем больше витков на катушке, тем сильнее магнитное поле. Это поле имеет такие же характеристики, что и естественное магнитное поле, а, следовательно, у него тоже есть северный и южный полюса.

Вращение вала электродвигателя обусловлено действием магнитного поля. Основные части электродвигателя: статор и ротор.

Ротор:

Подвижная часть электродвигателя, которая вращается с валом электродвигателя, двигаясь вместе с магнитным полем статора.

Статор:

Неподвижный компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

Вращение под действием магнитного поля

Преимуществом магнитных полей, которые создаются токопроводящими катушками, является возможность менять местами полюса магнита посредством изменения направления тока. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.

Одинаковые полюса магнитов отталкиваются друг от друга, противоположные полюса — притягиваются. Можно сказать, что это свойство используется для создания непрерывного движения ротора с помощью постоянной смены полярности статора. Ротором здесь, является магнит, который может вращаться.

Чередование полюсов с помощью переменного тока

Чередование полюсов с помощью переменного тока

Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:

Переменный ток — AC

Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.

Трёхфазный переменный ток

Трёхфазное питание — это непрерывный ряд перекрывающихся напряжений переменного тока (AC).

Смена полюсов

На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.

Для наглядности мы заменили ротор вращающимся магнитом, а статор — катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе — B1 и B2 , а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая — южным. Таким образом, если A1 — северный полюс, то A2 — южный.

Питание в сети переменного тока

Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.

Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.

Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)

Вращение ротора

Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.

Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.

Индукция

Ранее мы установили, как обыкновенный магнит вращается в статоре. В электродвигателях переменного тока AC установлены роторы, а не магниты. Наша модель очень схожа с настоящим ротором, за исключением того, что под действием магнитного поля ротор поляризуется. Это вызвано магнитной индукцией, благодаря которой в проводниках ротора наводится электрический ток.

Индукция

В основном ротор работает так же, как магнит. Когда электродвигатель включен, ток проходит по обмотке статора и создаёт электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Таким образом, в обмотках ротора индуцируется ток, который затем создаёт вокруг ротора электромагнитное поле и поляризацию ротора.

В предыдущем разделе, чтобы было проще объяснить принцип действия ротора, заменив его для наглядности магнитом. Теперь заменим магнитом статор. Индукция — это явление, которое наблюдается при перемещении проводника в магнитном поле. Относительное движение проводника в магнитном поле приводит к появлению в проводнике так называемого индуцированного электрического тока. Этот индуцированный ток создаёт магнитное поле вокруг каждой обмотки проводника ротора. Так как трёхфазное AC питание заставляет магнитное поле статора вращаться, индуцированное магнитное поле ротора будет следовать за этим вращением. Таким образом вал электродвигателя будет вращаться. Электродвигатели переменного тока часто называют индукционными электродвигателями переменного тока, или ИЭ (индукционными электродвигателями).

Принцип действия электродвигателей

Индукционные электродвигатели состоят из ротора и статора.

Токи в обмотках статора создаются фазовым напряжением, которое приводит в движение индукционный электродвигатель. Эти токи создают вращающееся магнитное поле, которое также называется полем статора. Вращающееся магнитное поле статора определяется токами в обмотках и количеством фазных обмоток.

Вращающееся магнитное поле формирует магнитный поток. Вращающееся магнитное поле пропорционально электрическому напряжению, а магнитный поток пропорционален электрическому току.

Вращающееся магнитное поле статора движется быстрее ротора, что способствует индукции токов в обмотках проводников роторов, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставляет ротор вращаться. Принципы действия индукционного электродвигателя представлены на иллюстрациях справа.

Таким образом, ротор и статор являются наиболее важными составляющими индукционного электродвигателя переменного тока. Они проектируются с помощью САПР (системы автоматизированного проектирования). Далее мы подробнее поговорим о конструкции ротора и статора.

Статор элетродвигателя

Статор — это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью — из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.

Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры — класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.

Ротор элетродвигателя

В электродвигателях используются так называемые «беличьи колеса» (короткозамкнутые роторы), конструкция которых напоминает барабаны для белок.

При вращении статора магнитное поле движется перпендикулярно обмоткам проводников ротора; появляется ток. Этот ток циркулирует по обмоткам проводников и создаёт магнитные поля вокруг каждого проводника ротора. Так как магнитное поле в статоре постоянно меняется, меняется и поле в роторе. Это взаимодействие и вызывает движение ротора. Как и статор, ротор изготовлен из пластин электротехнической стали. Но, в отличие от статора, с обмотками из медной проволоки, обмотки ротора выполнены из литого алюминия или силумина, которые выполняют роль проводников.

Асинхронные электродвигатели

В предыдущих разделах мы разобрали, почему электродвигатели переменного тока называют также индукционными электродвигателями, или электродвигателями типа «беличье колесо». Далее объясним, почему их ещё называют асинхронными электродвигателями. В данном случае во внимание принимается соотношение между количеством полюсов и числом оборотов, сделанных ротором электродвигателя.

Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать следующим образом: частота сети (F), умноженная на 120 и разделенная на число полюсов (P).

Если, например, частота сети 50 Гц, то синхронная частота вращения для 2-полюсного электродвигателя равна 3000 мин-1.

Синхронная частота вращения уменьшается с увеличением числа полюсов. В таблице, приведенной ниже, показана синхронная частота вращения для различного количества полюсов.

Число полюсов

Синхронная частота вращения 50 Гц

Синхронная частота вращения 60 Гц

Электродвигатель. Виды и применение. Работа и устройство

Электродвигатель представляет электромашину, перестраивающую электрическую энергию в механическую. Обычно электрическая машина реализует механическую работу благодаря потреблению приложенной к ней электроэнергии, преобразовывающейся во вращательное движение. Ещё в технике есть линейные двигатели, способные создавать сразу поступательное движение рабочего органа.

Особенности конструкции и принцип действия

Не важно какое конструктивное исполнение, но устройство любых электродвигателей однотипное. Ротор и статор находятся внутри цилиндрической проточки. Вращение ротора возбуждают магнитное поле, отталкивающее его полюса от статора (неподвижной обмотки). Сохранять постоянное отталкивание можно путём перекоммутации обмоток ротора, или образовав вращающееся магнитное поле непосредственно в статоре. Первый способ присущий коллекторным электродвигателям, а второй — асинхронным трехфазным.

Корпус любых электродвигателей обычно чугунный или выполнен из сплава алюминия. Однотипные двигатели, не смотря на конструкцию корпуса производятся с одинаковыми установочными размерами и электрическими параметрами.

Работа электродвигателя базируется на принципах электромагнитной индукции. Магнитная и электрическая энергия создают электродвижущуюся силу в замкнутом контуре, проводящем ток. Это свойство заложено в работу любой электромашины.

На движущийся электроток в середине магнитного поля постоянно воздействует механическая сила, стремительно пытающаяся отклонить направление зарядов в перпендикулярной силовым магнитным линиям плоскости. Во время прохождения электротока по металлическому проводнику либо катушке, механическая сила норовит подвинуть или развернуть всю обмотку и каждый проводник тока.

Назначение и применение электродвигателей

Электрические машины имеют много функций, они способны усиливать мощность электрических сигналов, преобразовывать величины напряжения либо переменный ток в постоянный и др. Для выполнения таких разных действий существуют многообразные типы электромашин. Двигатель представлят тип электрических машин, рассчитанных для преобразования энергии. А именно, этот вид устройств превращает электроэнергию в двигательную силу или механическую работу.

Он пользуется большим спросом во многих отраслях. Их широко используется в промышленности, на станках различного предназначения и в других установках. В машиностроении, к примеру, землеройных, грузоподъёмных машинах. Также они распространены в сферах народного хозяйства и бытовых приборах.

Классификация электродвигателей
Электродвигатель, является разновидностью электромашин по:
  • Специфике, создающегося вращательного момента:
    — гистерезисные;
    — магнитоэлектрические.
  • Строению крепления:
    — с горизонтальным расположением вала;
    — с вертикальным размещением вала.
  • Защите от действий внешней среды:
    — защищённые;
    — закрытые;
    — взрывонепроницаемые.

В гистерезисных устройствах вращающий момент образуется путём перемагничивания ротора или гистерезиса (насыщения). Эти двигатели мало эксплуатируются в промышленности и не считаются традиционными. Востребованными являются магнитоэлектрические двигатели. Существует много модификаций этих двигателей.

Их разделяют на большие группы по типу протекающего тока:
  • Постоянного тока.
  • Переменного тока.
  • Универсальные двигатели (работают на постоянном переменном токе).
Особенности магнитоэлектрических двигателей постоянного тока

С помощью двигателей постоянного тока создают регулируемые электрические приводы с высокими эксплуатационными и динамическими показателями.

Читать еще:  Открытая электропроводка
Типы электродвигателей:
  • С электромагнитами.
  • С постоянными магнитами.
Группа электродвигателей, питание которых выполняется постоянным током, подразделяется на подвиды:

  • Коллекторные . В этих электроприборах присутствует щёточно-коллекторный узел, обеспечивающий электрическое соединение неподвижной и вращающейся части двигателя. Устройства бывают с самовозбуждением и независимым возбуждением от постоянных магнитов и электромагнитов.
  • Выделяют следующие виды самовозбуждения двигателей:
    — параллельное;
    — последовательное;
    — смешанное.
  • Коллекторные устройства имеют несколько минусов:
    — низкая надёжность приборов;
    — щёточно-коллекторный узел довольно сложная в обслуживании составляющая часть магнитоэлектрического двигателя.
  • Безколлекторные (вентильные) . Это двигатели с замкнутой системой, работающие по аналогичному принципу работы синхронных устройств. Оснащены датчиком положения ротора, преобразователем координат, а также инвертором силовым полупроводниковым преобразователем.

Эти машины выпускаются различных размеров от самых маленьких низковольтных до громадных размеров (в основном до мегаватта). Миниатюрными электродвигателями оснащены компьютеры, телефоны, игрушки, аккумуляторные электроинструменты и т.п.

Применение, плюсы и минусы электродвигателей постоянного тока

Электромашины постоянного тока применяют в разных областях. Ими комплектуют подъёмно-транспортные, красочно-отделочные производственные машины, а также полимерное, бумажное производственное оборудование и т.д. Часто электрический двигатель этого типа встраивают в буровые установки, вспомогательные агрегаты экскаваторов и другие виды электротранспорта.

Преимущества электрических двигателей:
  • Лёгкость в управлении и регулировании частоты вращения.
  • Простота конструкции.
  • Отменные пусковые свойства.
  • Компактность.
  • Возможность эксплуатации в разных режимах (двигательном и генераторном).
Минусы двигателей:
  • Коллекторные двигатели требуют трудное профилактическое обслуживание щёточно-коллекторных узлов.
  • Дороговизна производства.
  • Коллекторные устройства имеют не большой срок службы из-за изнашивания самого коллектора.
Электродвигатель переменного тока

В электродвигателях переменного тока электроток описывается по синусоидальному гармоническому закону, периодично меняющему свой знак (направление).

Статор этих устройств изготавливают из ферромагнитных пластинок, имеющих пазы для помещения в них витков обмотки с конфигурацией катушки.

Электродвигатели по принципу работы бывают синхронными и асинхронными . Главным их отличием является то, что скорость магнитодвижущей силы статора в синхронных приборах равна скорости вращения ротора, а в асинхронных двигателях эти скорости не совпадают, обычно ротор вращается медленнее поля.

Синхронный электродвигатель
Из-за одинакового (синхронного) вращения ротора с магнитным полем, аппараты именуют синхронными электродвигателями. Их подразделяют на подвиды:
  • Реактивный.
  • Шаговый.
  • Реактивно-гистерезисный.
  • С постоянными магнитами.
  • С обмотками возбуждения.
  • Вентильный реактивный.
  • Гибридно-реактивный синхронный двигатель.

Большая часть компьютерной техники оснащена шаговыми электродвигателями. Преобразование энергии в этих устройствах основано на дискретно угловом передвижении ротора. Шаговый электродвигатель имеет высокую продуктивность, независящую от их мизерных размеров.

Достоинства синхронных двигателей:
  • Стабильность частоты вращения, что не зависит от механических нагрузок на валу.
  • Низкая чувствительность к скачкам напряжения.
  • Могут выступать в роли генератора мощности.
  • Снижают потребление мощности, предоставляемой электростанциями.
Недостатки в синхронных устройствах:
  • Сложности с запуском.
  • Сложность конструкции.
  • Затруднения в регулировки частоты вращения.

Недостатки синхронного двигателя, делают более выгодным для использования электродвигатель асинхронного типа. Тем не менее, большинство синхронных двигателей из-за их работы с постоянной скоростью востребованы для установок в компрессоры, генераторы, насосы, а также крупные вентиляторы и пр. оборудование.

Асинхронный электродвигатель

Статор асинхронных двигателей представляет распределённую двухфазную, трехфазную, реже многофазную обмотку. Ротор выполняют в виде цилиндра, используя медь, алюминий либо металл. В его пазы залиты либо запрессованные токопроводящие жилы к оси вращения под определённым углом. Они соединяются в одно целое на торцах ротора. Противоток возбуждается в роторе от переменного магнитного поля статора.

По конструктивным особенностям выделяют два вида асинхронных двигателей:
  • С фазным ротором.
  • С короткозамкнутым ротором.
В остальном конструкция приборов не имеет отличий, статор у них абсолютно одинаковый. По числу обмоток выделяют такие электродвигатели:
  • Однофазные . Этот тип двигателей самостоятельно не запускается, ему требуется стартовый толчок. Для этого применяется пусковая обмотка либо фазосдвигающая цепь. Также приборы запускаются вручную.
  • Двухфазные . В этих устройствах присутствуют две обмотки со смещёнными на угол фазами. В приборе возникает вращающееся магнитное поле, напряженность которого в полюсах одной обмотки нарастает и синхронно спадает в другой.
    Двухфазный электродвигатель может самостоятельно запускаться, но с реверсом присутствуют сложности. Часто этот тип устройств подключают к однофазным сетям, включая вторую фазу через конденсатор.
  • Трехфазные . Достоинством этих типов электродвигателей является легкий реверс. Основные части двигателя – это статор с тремя обмотками и ротор. Позволяет плавно регулировать скорость ротора. Эти приборы довольно востребованы в промышленности и технике.
  • Многофазные . Состоят эти устройства из встроенной многофазной обмотки в пазах статора на его внутренней поверхности. Эти двигатели гарантируют высокую надёжность при эксплуатации и считаются усовершенствованными моделями двигателей.

Асинхронные электрические двигатели значительно облегчают работу людей, поэтому они незаменимы во многих сферах.

Достоинствами этих приборов, которые сыграли роль в их популярности, являются следующие моменты:
  • Простота производства.
  • Высокая надёжность.
  • Не нуждаются в преобразователях для включения в сеть.
  • Небольшие расходы при эксплуатации.
Ко всему этому, можно добавить относительную стоимость асинхронных приборов. Но они также имеют и недостатки:
  • Невысокий коэффициент мощности.
  • Трудность в точной регулировке скорости.
  • Маленький пусковой момент.
  • Зависимость от напряжения сети.

Но благодаря питанию электродвигателя с помощью частотного преобразователя, некоторые недостатки устройств устраняются. Поэтому потребность асинхронных моторов не падает. Их применяют в приводах разных станков в областях металлообработки, деревообработки и пр. В них нуждаются ткацкие, швейные, землеройные, грузоподъёмные и другие виды машин, а также вентиляторы, насосы, центрифуги, разные электроинструменты и бытовые приборы.

Принцип работы электродвигателя

Электрический двигатель (electric motor), сокращенно электродвигатель, – это электрическая машина, с помощью которой электрическая энергия преобразуется в механическую, с ее помощью приводятся в движение различные механизмы.

Электродвигатель является основным элементом электропривода. В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии (когда механическая работа преобразуется в электрическую энергию и тепло), то есть работает в режиме электрического генератора.

Устройство электродвигателя

Электродвигатель состоит из

  • Статора — это неподвижная его часть.
  • Ротора — подвижная часть.
  • Коллектора, выполняющего одновременно 2 функции: является датчиком углового положения ротора и переключателем тока со скользящими контактами.
  • Щеток – скользящих контактов, расположенных вне ротора и прижатых к коллектору.

Принцип работы электродвигателя

Современные электрические моторы работают благодаря существованию такого понятия, как электромагнитная индукция. Оба магнитных поля ротора и статора взаимодействуют между собой. В определенное время происходит так называемый “вращающий момент”, когда подвижная часть конструкции приводится в движение.
В результате взаимодействия магнитных полей электрическая энергия начинает превращаться в механическую.

Классификация электродвигателей

В зависимости от характеристик питающей сети выделяют 2 основных типа двигателя:
— Постоянного тока
— Переменного тока:

  • Синхронные (где ротор вращается синхронно с магнитным полем питающего напряжения)
  • Асинхронные (где частота вращения ротора отличается от частоты вращения магнитного поля): однофазные, двухфазные, трехфазные, многофазные

Основные параметры электродвигателей

Номинальными данными электрической машины называют данные, характеризующие ее работу в режиме, для которого она предназначена заводом-изготовителем. К номинальным данным относятся мощность, напряжение, ток, частота, КПД, коэффициент мощности, частота вращения и ряд других данных в зависимости от типа и назначения машины.

  • Мощность, Вт
  • Частота вращения, об/мин
  • Крутящий (вращающий) момент, Нм
  • Потребляемый ток, А
  • КПД, %
  • Напряжение сети, В
  • Частота сети, Гц

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Тестирование

  • Каталог тестов

Урок 36 (дополнительный материал). Принцип действия электродвигателя. Электроизмерительные приборы

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Принцип действия электродвигателя.

Электродвигательэто просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Устройство и принцип работы простейшего электродвигателя.

В основе конструкции электрического двигателя лежит эффект, обнаруженный Майклом Фарадеем в 1821 году: что взаимодействие электрического тока и магнита может вызывать непрерывное вращение. Один из первых двигателей, нашедших практическое применение, был двигатель Бориса Семеновича Якоби (1801 –1874), приводивший в движение катер с 12 пассажирами на борту. Однако для широкого использования электродвигателя необходим был источник дешевой электроэнергии — электромагнитный генератор.

Принцип работы электродвигателя очень прост: вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором.

Вращающаяся часть электрической машины называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.

Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки). При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Простейший электродвигатель

Простейший электродвигатель работает только на постоянном токе (от батарейки). Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.

В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

Промышленный электродвигатель

Электроизмерительные приборы.

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Группа электромагнитных приборов является наиболее распространенной. Принцип их действия, использованный впервые еще Ф. Кольраушем в 1884 году, основан на перемещении подвижной железной части под влиянием магнитного потока, создаваемого катушкой, по которой пропускается ток. Практическое осуществление этого принципа отличается разнообразием.

Ориентирующее действие магнитного поля на контур с током используют в электроизмерительных приборах магнитоэлектрической системы – амперметрах, вольтметрах и др.

Устройство прибора магнитоэлектрической системы

Измерительный прибор магнитоэлектрической системы устроен следующим образом.

Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О’, к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок).

Читать еще:  Основные отличия между занулением и заземлением

В результате при любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Векторы F и –F изображают силы, действующие на катушку со стороны магнитного поля и поворачивающие ее. Катушка с током поворачивается до тех пор, пока силы упругости со стороны пружины не уравновесят силы, действующие на рамку со стороны магнитного поля. Увеличивая силу тока в рамке в 2 раза, рамка повернётся на угол, вдвое больший. Это происходит потому, что Fm

Силы, действующие на рамку с током прямо пропорциональны силе тока, то есть можно, проградуировав прибор, измерять силу тока в рамке.

Точно так же можно прибор настроить на измерение напряжения в цепи, если проградуировать шкалу в вольтах, причём сопротивление рамки с током должно быть выбрано очень большим по сравнению с сопротивлением участка цепи, на котором измеряем напряжение.

Дополнительные материалы.

2. Презентация «Электроизмерительные приборы» скачать с Яндекса

Принцип работы электродвигателя. Простыми словами о сложном.

Принцип работы электродвигателя основывается на эффекте обнаруженном Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита, может возникнуть непрерывное вращение.

Принцип работы электродвигателя постоянного тока

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положение, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент. На рисунке выше это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

Простыми словами о сложном

На самом деле там векторное произведение, дифференциалы и т.п. но это детали, а у нас упрощённый случай. И так…

Рис. 1 Основа работы электрического двигателя

Направление силы ампера определяется правилом левой руки.

Рис. 2 Правило левой руки

Мысленно ставим левую ладонь на верхний рисунок и получаем направление сил Ампера. Она типа растягивают рамку с током в том положении как нарисовано на рис.1. И никуда вертеться тут ничего не будет, рамка в равновесии, устойчивом.

А если рамка с током повернута по-другому, то вот что будет:

Рис. 3 Рамка

Здесь уже равновесия нет, сила Ампера разворачивает противоположные стенки так, что рамка начинает вращаться. Появляется механическое вращение. Это основа электрического двигателя, самая суть, дальше только детали.

Теперь что будет делать рамка с током на рис.3?. Если система идеальная, без трения, то очевидно будут колебания. Если трение присутствует, то колебания постепенно затухнут, рамка с током стабилизируется и станет как на рис.1.

Но нам нужно постоянное вращение и достичь его можно двумя принципиально разными способами и отсюда и возникает разница между двигателями постоянного и переменного трёхфазного тока.

Принцип работы электродвигателя постоянного тока

Способ 1. Смена направления тока в рамке.

Этот способ используется в двигателях постоянного тока и его потомках.

Наблюдаем за картинками. Пусть наш двигатель обесточен и рамка с током ориентирована как-то хаотично, вот так например:

Рис. 4.1 Случайно расположенная рамка

На случайно расположенную рамку действует сила Ампера и она начинает вращаться.

Рис. 4.2

В процессе движения рамка достигает угла 90°. Момент (момент пары сил или вращательный момент) максимальный.

Рис. 4.3

И вот рамка достигает положения, когда момента вращения нет. И если сейчас не отключить ток, то сила Ампера будет уже тормозить рамку и в конце полуоборота рамка остановится и начнёт вращение в противоположном направлении. Но нам ведь этого не надо.

Поэтому мы на рис.3 делаем хитрый ход – меняем направление тока в рамке.

Рис. 4.4

И вот после пересечения этого положения, рамка с поменянным направлением тока уже не тормозится, а снова разгоняется.

Рис. 4.5

А когда рамка подходит к следующему положению равновесия, мы меняем ток ещё раз.

Рис. 4.6

И рамка опять продолжает ускоряться куда нам надо.

Вот так и получается постоянное вращение. Красиво? Красиво. Нужно только менять направление тока два раза за оборот и всего делов.

А делает это, т.е. обеспечивает смену тока специальный узел – щёточно-коллекторный узел. Принципиально он устроен так:

Рис. 5

Рисунок понятен и без пояснений. Рамка трётся то об один контакт, то об другой и так вот ток и меняется.

Очень важная особенность щёточно-коллекторного узла – его малый ресурс. Из-за трения. Например, вот движок ДПР-52-Н1 – минимальная наработка 1000 часов. В то же время срок службы современных бесколлекторных двигателей более 10000 часов, а двигателей переменного тока (там тоже нет ЩКУ) более 40000 часов.

Принцип работы электродвигателя переменного тока

Способ 2. Вращается магнитный поток, т.е. магнитное поле.

Вращающееся магнитное поле получают с помощью переменного трёхфазного тока. Вот есть статор.

Рис. 6 Статор электродвигателя

А есть значит 3 фазы переменного тока.

Рис. 7

Между ними как видно на Рис. 7 120 градусов, электрических градусов.

Эти три фазы укладывают в статор специальным образом, чтобы они геометрически были повернуты друг к дружке на 120°.

Рис. 8

И тогда при подаче трёхфазного питания получается само собой за счёт складывания магнитных потоков от трёх обмоток вращающееся магнитное поле.

Рис. 9 Вращающееся магнитное поле

Далее вращающееся магнитное поле влияет силой Ампера на нашу рамку и она вращается.

Но здесь есть тоже различия, два разных способа.

Способ 2а. Рамка запитывается (синхронный двигатель).

Подаём значит на рамку напряжение (постоянное), рамка выставляется по магнитному полю. Помните рис.1 из самого начала? Вот так рамка и становится.

Рис. 10 (Рис.1)

Но поле магнитное у нас тут вращается, а не просто так висит. Рамка чего будет делать? Тоже будет вращаться, следуя за магнитным полем.

Они (рамка и поле) вращаются с одинаковой частотой, или синхронно, поэтому такие двигатели называются синхронными двигателями.

Способ 2б. Рамка не запитывается (асинхронный двигатель).

Фишка в том, что рамка не запитывается, совсем не запитывается. Просто проволока такая замкнутая.

Когда мы начинаем вращать магнитное поле, по законам электромагнетизма в рамке наводится ток. От этого тока и магнитного поля получается сила Ампера. Но сила Ампера будет возникать только если рамка движется относительно магнитного поля (известная история с опытами Ампера и его походами в соседнюю комнату).

Так что рамка всегда будет отставать от магнитного поля. А то, если она его вдруг почему-то догонит, то пропадёт наводка от поля, пропадёт ток, пропадёт сила Ампера и всё вообще пропадёт. То есть, в асинхронном двигателе рамка всегда отстаёт от поля и частота у них значит разная, то есть вращаются они асинхронно, поэтому и двигатель называется асинхронным.

Принцип работы электродвигателя

Одними из основных потребителей электроэнергии на производстве являются электромоторы. Электрический ток, поданный на такую машину, заставляет её работать. Это явление превращения электричества во вращение вала двигателя в сотни раз повысило эффективность технологического процесса. Как устроены электродвигатели, станет понятно после изучения их устройства.

Устройство и принцип действия электродвигателя постоянного тока

Машины, осуществляющие свою работу при присоединении к ним тока, не меняющего свою полярность, называют машинами постоянного тока. Они превращают электричество в механическую энергию.

Принцип работы электродвигателя всякой конструкции опирается на использование закона электромагнитной индукции и явления самоиндукции.

Информация. В замкнутом контуре или рамке, помещённой в магнитное поле (МП) постоянных магнитов, возникает электродвижущая сила (ЭДС). Это происходит в результате пронизывания рамки электромагнитными линиями МП, если крутить магниты или саму рамку.

В основе работы электродвигателя лежит образование крутящего момента при подаче напряжения на катушки якоря. Его ещё называют синхронным двигателем постоянного тока (ДПТ). Устройство простейшей машины вмещает в себя:

  • статор, с расположенными на нём постоянными магнитами;
  • двухзубцовый якорь, имеющий одну обмотку;
  • коллектор;
  • щёточный узел, в который входят две щётки и два ламеля (пластины).

Внимание! У такого двигателя две «мёртвые точки» (крайние положения). В этих точках невозможно самозапускание, а крутящий момент такого ДПТ неравномерен.

Статор, он же – индуктор, располагает в основном двумя парами основных полюсов. В случае необходимости на нём устанавливают добавочные. Это улучшает переключение на коллекторе якоря.

Ротор, он же – якорь, должен иметь как минимум три зубца, чтобы двигатель мог сам запускаться из каждой точки. При этом в зону подключения стабильно попадает один из зубцов.

На щёточно-коллекторный узел выведены все катушки якоря, какие есть. Коллектор является кольцом из изолированных ламелей (пластин), размещённых по длине оси ротора. По ним скользят щётки и подают или снимают напряжение.

Важно! Двигатель вращается благодаря силе Ампера, которая действует на проводник, находящийся в МП, когда в нём протекает электрический ток. При этом источник тока должен поддерживать его неизменное значение.

Все ДПТ обладают свойствами саморегулирования, поддерживая вращающий момент равным моменту сопротивления на валу. Это происходит автоматически, и частота вращения постоянна.

Классификация электродвигателей

Электрические машины можно разбить на две группы, обращая внимание на особенности образования момента вращения: магнитоэлектрические и гистерезисные. Вторая группа применяется редко, у них вращение происходит за счёт перемагничивания ротора.

Магнитоэлектрические моторы подразделяются по роду тока на модели:

  • постоянного тока;
  • пульсирующего тока;
  • переменного тока;
  • универсальные.

Универсальными моторы называются, потому что могут потреблять для работы, как постоянный, так и переменный ток.

Двигатели постоянного тока

Несмотря на то, что такие моторы могут питаться, как постоянным, так и переменным током, в основном на их обмотки подают постоянное напряжение.

Внимание! Способ переключения фаз позволяет разделять ДПТ на коллекторные и вентильные. Присутствие обратных связей по току, напряжению и скорости допускает наличие регулируемого электропривода.

Коллекторные машины имеют проблемное место: щёточно-коллекторный узел (ЩКУ), который создаёт сложность в облуживании и некоторую ненадёжность в работе.

Вентильные электромоторы лишены коллектора, фазы переключает инвертор (электронный блок). У таких машин возможна обратная связь через датчик позиции ротора.

Двигатели пульсирующего тока

Подобные аппараты используются на электровозах. Питание мотора осуществляется от пульсирующего тока. От ДПТ их конструктивно отличает следующее:

  • присутствие компенсационной обмотки;
  • увеличенное количество полюсных пар;
  • шихтованные допполюса;
  • шихтованные включения в каркас.

К сведению. Такой ток получается в результате сложения двух токов: постоянного и переменного, потому имеет обе составляющие. Он не меняет направления, а пульсирует, кратковременно меняя значения от максимума до минимума и не во всех случаях до нуля.

Двигатели переменного тока (ПТ)

По способу работы такие машины делятся на двигатели: синхронные и асинхронные.

Почему синхронные? Потому что скорость ротора и скорость вращающегося в статоре МП абсолютно совпадают. У асинхронных моторов скорость вращения МП в статоре выше, чем у ротора.

Универсальный коллекторный электродвигатель (УКД)

Такой тип применяется в электроинструментах: это отрезная машинка, дрель, триммер и др. Незаменим там, где нужны высокие обороты (выше 3000 об./мин.), маленькие размеры и небольшой вес. Двигатель работает от обоих видов тока и обладает последовательно включённой обмоткой возбуждения. В электронную схему входит линейный преобразователь напряжения.

Внимание! При использовании постоянного тока напряжением 220В обмотка возбуждения подключается полностью, при переменном токе и аналогичном напряжении включение частичное.

Синхронный электродвигатель возвратно-поступательного движения

Принцип действия электродвигателя заключается в том, что на штоке, который движется, установлены магниты постоянной природы. В корпус мотора вмонтирован магнитопровод с катушками, на которые подаётся ПТ. Катушки установлены так, что создаваемое ими МП заставляет двигаться шток туда-сюда.

Использование асинхронных двигателей в однофазной цепи

Отличительной чертой при запуске такого мотора является ручное включение. Это вызвано наличием пусковой обмотки или фазосдвигающей цепи. В отличие от трёхфазного собрата, который запускается автоматически, за счёт сдвига трёх фаз, однофазному нужен начальный толчок.

Запуск достигается кратковременным включением дополнительной (пусковой) обмотки, которая включается через пусковое реле с термопарой или кнопкой ПНВС -12(220В 10А).

К сведению. Можно включить и трёхфазный асинхронный мотор в сеть 220 В. При этом обмотки соединяются в «звезду» или «треугольник». Концы двух обмоток подсоединяют к сети, конец третьей – через последовательно присоединённый пусковой конденсатор большой ёмкости кратковременно (во избежание сгорания) подключают к одной из них.

Читать еще:  СИП технические характеристики Технические характеристики самонесущего провода СИП

Чтобы повысить мощность электродвигателя, формула которого включает в себя cosϕ, коэффициент мощности, следовательно, и коэффициент полезного действия (КПД), в цепь включают рабочую ёмкость. Она включена постоянно. Так, трёхфазный двигатель на 2 квт, при включении подобным образом, будет отдавать только 45-60% заявленной мощности. Мощность любого трехфазного двигателя по формуле вычислить несложно.

УКД: принцип работы и характеристики

Это однофазные двигатели, работающие на высоких оборотах при любом типе подводимого электричества.

Ответ на вопрос, почему такое устройство работает от переменного тока, заключается в том, что направление вращающего момента не меняется. Полярность полюсов статора меняется практически одновременно с изменением токового направления в якорной обмотке.

Важно! Для этого применяют последовательное возбуждение двигателя. Следовательно, ток возбуждения и ток якоря – один и тот же.

Потому при смене положительных и отрицательных полупериодов практически одновременно изменяются и ток в якорной обмотке Iа, и магнитный поток Ф.

Синхронный принцип работы электродвигателя

Особенности синхронной работы моторов зависят от того, какой двигатель рассматривается. Они бывают:

  • с катушками возбуждения;
  • с постоянными магнитами (ПМ);
  • реактивные;
  • гистерезисные;
  • шаговые.

Есть гибридные модели: реактивные с ПМ и реактивно-гистерезисные.

Независимо от того, какие двигатели рассматривать, условие синхронности базируется на взаимодействии МП полюсов индуктора (статора) и МП якоря.

К сведению. Если конструктивное строение обратить (расположить якорь и индуктор наоборот), то синхронный двигатель превращается в генератор.

Двигатель работает следующим образом: постоянный ток прикладывается к обмотке возбуждения (от внешнего источника питания), а переменный – к трёхфазной обмотке якоря. Якорная обмотка создаёт вращающееся МП, которое вступает во взаимосвязь с МП обмотки возбуждения. Результат – электромагнитный момент, вращающий ротор.

Электродвигатель у бактерий

Вращение жгутика у бактерии выполняется молекулярным двигателем. Он состоит из некоторого количества молекул, которые преобразуют электроток, создаваемый движением протонов, в энергию вращения жгутика бактерии.

Формула мощности трехфазного двигателя

Для того чтобы определить мощность двигателя, формула выглядит так:

Составляющие формулы:

  • Uн – номинальное напряжение;
  • Iн – номинальный ток электромотора (по паспорту);
  • Cosϕ – коэффициент мощности (0,75-0,9);
  • η – КПД (0,7-0,85).

Если величина Iн неизвестна, ее нужно найти, применив соответствующую формулу.

Асинхронные двигатели, используемые для трёхфазной сети, – наиболее стабильные и надёжные машины. Однако частотный предел переменного тока 50 Гц не позволяет им развивать скорость вращения более 3000 об./мин. Поэтому универсальные коллекторные ДПТ – эффективный выход для механических процессов, требующих от мотора способности вращать вал с более высокой частотой.

Видео

Принцип действия и устройство электродвигателя

Любой электрический двигатель предназначен для совершения механической работы за счет расхода приложенной к нему электроэнергии, которая преобразуется, как правило, во вращательное движение. Хотя в технике встречаются модели, которые сразу создают поступательное движение рабочего органа. Их называют линейными двигателями.

В промышленных установках электромоторы приводят в действие различные станки и механические устройства, участвующие в технологическом производственном процессе.

Внутри бытовых приборов электродвигатели работают в стиральных машинах, пылесосах, компьютерах, фенах, детских игрушках, часах и многих других устройствах.

Основные физические процессы и принцип действия

На движущиеся внутри магнитного поля электрические заряды, которые называют электрическим током, всегда действует механическая сила, стремящаяся отклонить их направление в плоскости, расположенной перпендикулярно ориентации магнитных силовых линий. Когда электрический ток проходит по металлическому проводнику или выполненной из него катушке, то эта сила стремится подвинуть/повернуть каждый проводник с током и всю обмотку в целом.

На картинке ниже показана металлическая рамка, по которой течет ток. Приложенное к ней магнитное поле создает для каждой ветви рамки силу F, создающую вращательное движение.

Это свойство взаимодействия электрической и магнитной энергии на основе создания электродвижущей силы в замкнутом токопроводящем контуре положено в работу любого электродвигателя. В его конструкцию входят:

обмотка, по которой протекает электрический ток. Ее располагают на специальном сердечнике-якоре и закрепляют в подшипниках вращения для уменьшения противодействия сил трения. Эту конструкцию называют ротором;

статор, создающий магнитное поле, которое своими силовыми линиями пронизывает проходящие по виткам обмотки ротора электрические заряды;

корпус для размещения статора. Внутри корпуса сделаны специальные посадочные гнезда, внутри которых вмонтированы внешние обоймы подшипников ротора.

Упрощенно конструкцию наиболее простого электродвигателя можно представить картинкой следующего вида.

При вращении ротора создается крутящий момент, мощность которого зависит от общей конструкции устройства, величины приложенной электрической энергии, ее потерь при преобразованиях.

Величина максимально возможной мощности крутящего момента двигателя всегда меньше приложенной к нему электрической энергии. Она характеризуется величиной коэффициента полезного действия.

По виду протекающего по обмоткам тока их подразделяют на двигатели постоянного или переменного тока. Каждая из этих двух групп имеет большое количество модификаций, использующих различные технологические процессы.

Электродвигатели постоянного тока

У них магнитное поле статора создается стационарно закрепленными постоянными магнитами либо специальными электромагнитами с обмотками возбуждения. Обмотка якоря жестко вмонтирована в вал, который закреплен в подшипниках и может свободно вращаться вокруг собственной оси.

Принципиальное устройство такого двигателя показано на рисунке.

На сердечнике якоря из ферромагнитных материалов расположена обмотка, состоящая из двух последовательно соединенных частей, которые одним концом подключены к токопроводящим коллекторным пластинам, а другим скоммутированы между собой. Две щетки из графита расположены на диаметрально противоположных концах якоря и прижимаются к контактным площадкам коллекторных пластин.

На нижнюю щетку рисунка подводится положительный потенциал постоянного источника тока, а на верхнюю — отрицательный. Направление протекающего по обмотке тока показано пунктирной красной стрелкой.

Ток вызывает в нижней левой части якоря магнитное поле северного полюса, а в правой верхней — южного (правило буравчика). Это приводит к отталкиванию полюсов ротора от одноименных стационарных и притяжению к разноименным полюсам на статоре. В результате приложенной силы возникает вращательное движение, направление которого указывает коричневая стрелка.

При дальнейшем вращении якоря по инерции полюса переходят на другие коллекторные пластины. Направление тока в них изменяется на противоположное. Ротор продолжает дальнейшее вращение.

Простая конструкция подобного коллекторного устройства приводит к большим потерям электрической энергии. Подобные двигатели работают в приборах простой конструкции или игрушках для детей.

Электродвигатели постоянного тока, участвующие в производственном процессе, имеют более сложную конструкцию:

обмотка секционирована не на две, а на большее количество частей;

каждая секция обмотки смонтирована на своем полюсе;

коллекторное устройство выполнено определенным количеством контактных площадок по числу секций обмоток.

В результате этого создается плавное подключение каждого полюса через свои контактные пластины к щеткам и источнику тока, снижаются потери электроэнергии.

Устройство подобного якоря показано на картинке.

У электрических двигателей постоянного тока можно реверсировать направление вращения ротора. Для этого достаточно изменить движение тока в обмотке на противоположное сменой полярности на источнике.

Электродвигатели переменного тока

Они отличаются от предыдущих конструкций тем, что электрический ток, протекающий в их обмотке, описывается по синусоидальному гармоническому закону, периодически изменяющему свое направление (знак). Для их питания напряжение подается от генераторов со знакопеременной величиной.

Статор таких двигателей выполняется магнитопроводом. Его делают из ферромагнитных пластин с пазами, в которые помещают витки обмотки с конфигурацией рамки (катушки).

На картинке ниже показан принцип работы однофазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора.

В пазах статорного магнитопровода по диаметрально противоположным концам размещены проводники обмотки, схематично показанные в виде рамки, по которой протекает переменный ток.

Рассмотрим случай для момента времени, соответствующего прохождению положительной части его полуволны.

В обоймах подшипника свободно вращается ротор с вмонтированным постоянным магнитом, у которого ярко выражены северный «N рот» и южный «S рот» полюса. При протекании положительной полуволны тока по обмотке статора в ней создается магнитное поле с полюсами «S ст» и «N ст».

Между магнитными полями ротора и статора возникают силы взаимодействия (одноименные полюса отталкиваются, а разноименные — притягиваются), которые стремятся повернуть якорь электродвигателя из произвольного положения в окончательное, когда осуществляется максимально близкое расположение противоположных полюсов относительно друг друга.

Если рассматривать этот же случай, но для момента времени, когда по рамочному проводнику протекает обратная — отрицательная полуволна тока, то вращение якоря будет происходить в противоположную сторону.

Для придания непрерывного движения ротору в статоре делают не одну обмотку-рамку, а определенное их количество с таким учетом, чтобы каждая их них питалась от отдельного источника тока.

Принцип работы трехфазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора показан на следующей картинке.

В этой конструкции внутри магнитопровода статора смонтированы три обмотки А, В и С, смещенные на углы 120 градусов между собой. Обмотка А выделена желтым цветом, В — зеленым, а С — красным. Каждая обмотка выполнена такими же рамками, как и в предыдущем случае.

На картинке для каждого случая ток проходит только по одной обмотке в прямом или обратном направлении, которое показано значками «+» и «-».

При прохождении положительной полуволны по фазе А в прямом направлении ось поля ротора занимает горизонтальное положение потому, что магнитные полюса статора формируются в этой плоскости и притягивают подвижный якорь. Разноименные полюса ротора стремятся приблизиться к полюсам статора.

Когда положительная полуволна пойдет по фазе С, то якорь повернется на 60 градусов по ходу часовой стрелки. После подачи тока в фазу В произойдет аналогичный поворот якоря. Каждое очередное протекание тока в очередной фазе следующей обмотки будет вращать ротор.

Если к каждой обмотке подвести сдвинутое по углу 120 градусов напряжение трехфазной сети, то в них будут циркулировать переменные токи, которые раскрутят якорь и создадут его синхронное вращение с подведенным электромагнитным полем.

Эта же механическая конструкция успешно применяется в трехфазном шаговом двигателе . Только в каждую обмотку с помощью управления специальным контроллером (драйвером шагового двигателя) подаются и снимаются импульсы постоянного тока по описанному выше алгоритму.

Их запуск начинает вращательное движение, а прекращение в определенный момент времени обеспечивает дозированный поворот вала и остановку на запрограммированный угол для выполнения определенных технологических операций.

В обеих описанных трехфазных системах возможно изменение направления вращения якоря. Для этого надо просто поменять чередование фаз «А»-«В»-«С» на другое, например, «А»-«С»-«В».

Скорость вращения ротора регулируется продолжительностью периода Т. Его сокращение приводит к ускорению вращения. Величина амплитуды тока в фазе зависит от внутреннего сопротивления обмотки и значения приложенного к ней напряжения. Она определяет величину крутящего момента и мощности электрического двигателя.

Эти конструкции двигателей имеют такой же статорный магнитопровод с обмотками, как и в ранее рассмотренных однофазных и трехфазных моделях. Они получили свое название из-за несинхронного вращения электромагнитных полей якоря и статора. Сделано это за счет усовершенствования конфигурации ротора.

Его сердечник набран из пластин электротехнических марок стали с пазами. В них вмонтированы алюминиевые либо медные тоководы, которые по концам якоря замкнуты токопроводящими кольцами.

Когда к обмоткам статора подводится напряжение, то в обмотке ротора электродвижущей силой наводится электрический ток и создается магнитное поле якоря. При взаимодействии этих электромагнитных полей начинается вращение вала двигателя.

У этой конструкции движение ротора возможно только после того, как возникло вращающееся электромагнитное поле в статоре и оно продолжается в несинхронном режиме работы с ним.

Асинхронные двигатели проще в конструктивном исполнении. Поэтому они дешевле и массово применяются в промышленных установках и бытовой домашней технике.

Взрывозащищенный электродвигатель ABB

Многие рабочие органы промышленных механизмов выполняют возвратно-поступательное или поступательное движение в одной плоскости, необходимое для работы металлообрабатывающих станков, транспортных средств, ударов молота при забивании свай …

Перемещение такого рабочего органа с помощью редукторов, шариковинтовых, ременных передач и подобных механических устройств от вращательного электродвигателя усложняет конструкцию. Современное техническое решение этой проблемы — работа линейного электрического двигателя.

У него статор и ротор вытянуты в виде полос, а не свернуты кольцами, как у вращательных электродвигателей.

Принцип работы заключается в придании возвратно-поступательного линейного перемещения бегуну-ротору за счет передачи электромагнитной энергии от неподвижного статора с незамкнутым магнитопроводом определенной длины. Внутри него поочередным включением тока создается бегущее магнитное поле.

Оно воздействует на обмотку якоря с коллектором. Возникающие в таком двигателе силы перемещают ротор только в линейном направлении по направляющим элементам.

Линейные двигатели конструируются для работы на постоянном или переменном токе, могут работать в синхронном либо асинхронном режиме.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector