400volt.ru

Домашнему электрику
75 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Система заземления тт

Схема cистемы заземления ТТ и область применнения

Общепринятый стандарт, позволяющий добиться безопасной эксплуатации электрического оборудования, предполагает использование заземления. В Правилах устройства электроустановок защитное заземление упоминается в пункте 1.7.51.

Заземление предусматривает объединение открытых токоведущих элементов электрических установок и сетей с заземляющим контуром. Существует несколько способов организации заземления, один из них — система заземления ТТ, о которой и пойдет речь далее.

Принцип действия

Стандарт используется в электросетях с глухозаземленными нейтралями. Система TT функционирует по достаточно простому принципу. Токоведущие элементы соединяют на стороне потребителя. Защитный проводник PE заземляется независимо от нуля (N). Контакт между данными проводниками не допускается. Даже при наличии в непосредственной близости контура заземления нуля защитный проводник заземляется через собственный контур. Не разрешается контактирование контуров друг с другом.

На рисунке внизу показана схема, по которой работает система TT.

Сфера применения

Заземление типа TT нельзя отнести к стандартному способу решения проблемы защиты. Правила устройства электроустановок содержит нормы, указывающие, что в электросетях с глухозаземленной нейтралью следует использовать заземление стандарта TN. Данная система включает несколько подсистем, в том числе TN-S, TN-C, TN-C-S.

Разные варианты имеют свои особенности, но в то же время схожи конструкцией: заземлительные цепи нейтрали трансформатора и электрических установок объединены. Подобный способ защиты наиболее доступен с точки зрения потребителя, подключающегося к сети. Система TN обходится без создания заземлителя на стороне потребителя.

Стандарт TТ применяется, когда необходимы особые меры по обеспечению электробезопасности. Это не всегда достижимо с помощью TN. Правила устройства электроустановок прямо указывают на то, что TT применяется только при невозможности обеспечения стандартом TN требуемого уровня безопасности.

Чаще всего о необходимости установки TT говорят, когда питающая воздушная линия электропередачи находится в плохом техническом состоянии (особенно если построена по временной схеме). Ненадежность электросети влечет высокий риск повреждения заземляющего проводника (потеря электросвязи между заземлителем на подстанции и заземляющей системой потребителя). В результате такого положения любой пробой изоляции приведет к тому, что напряжение на корпусах электрооборудования будет равно рабочему напряжению сети. Таким образом, система TT особенно актуальна как временное решение проблемы защиты какого-либо объекта (например, строительной площадки, вагончиков для рабочих и т. п.).

Стандарт TT применим и в частных домах. Следует заметить, что организация заземления по этой схеме достаточно сложна для домовладельца. Без помощи опытных специалистов скорее всего не обойтись.

Обратите внимание! По Правилам устройства электроустановок заземление по схеме TT не допускается без использования устройства защитного отключения (УЗО).

Устройство защитного отключения — защитная система, предназначенная для аварийного отключения сети. Необходимость в нем возникает при утечке тока, что происходит при повреждении изоляционного слоя. УЗО отзывается на разницу токов, идущих по фазному и нулевому проводникам. В случае нарушения изоляции электрической установки возникает шунтирующая цепь через корпус электроустановки на землю и появляется ток утечки на заземление.

Требования к устройству заземления

Наиболее важный параметр заземляющего устройства — уровень сопротивления. Технические требования к заземлению, построенному по схеме TT, выражаются в следующей формуле:

Если используются несколько УЗО, во внимание принимается дифференциальный ток срабатывания того оборудования, где его значение самое большое. Помимо условия, указанного в формуле, необходимо выполнить основную систему уравнения потенциалов.

Заземление выполняется путем соединения друг с другом следующих конструкционных элементов:

  • заземление объекта;
  • металлические трубы отопительной, канализационной системы, газопроводы, водопроводы (как холодного водоснабжения, так и горячего);
  • металлоконструкции каркаса сооружения;
  • металлические части систем вентиляции и охлаждения воздуха;
  • элементы молниезащиты здания.

к содержанию ↑

Достоинства и недостатки

Главное достоинство стандарта ТТ — независимость от качества линий электропитания, от их потенциального повреждения. Поскольку заземляющее устройство расположено рядом с защищаемым объектом, вероятность обрыва электросвязи резко уменьшается.

Однако создание полноценной защиты по данной технологии сопряжено с большим объемом земляных работ. Не обойтись без УЗО, что делает схему более сложной и дорогостоящей.

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Читать еще:  Что такое ток короткого замыкания

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Система заземления TT

Система заземления TT поможет обезопасить ваш дом. Она имеет широкий спектр распространения, и применяют ее в тех местах, где системы заземления TN-C, TN-C-S и TN-S обеспечены не полностью. Применять эту систему необходимо в том случае если воздушная линия имеет неудовлетворительное состояние.

На сегодняшний день большинство воздушных линий имеют неудовлетворительное состояние. На большинстве опорах нет дополнительного заземления. Также эта система заземления TT активно применяется для защиты людей от поражения током через металлические поверхности. К этим поверхностям можно отнести:

  1. Строительные вагончики.
  2. Металлические контейнеры.
  3. Помещения, которые имеют диэлектрическую поверхность стен.

Система заземления TT и ее принцип исполнения

Принцип системы TT достаточно прост. Он основывается на том, что защитный проводник PE должен заземляться независимо от нулевого проводника N. Связь между этими проводниками запрещена. Даже если рядом располагается контур заземления нулевого проводника, то защитный проводник должен заземляться через свой контур заземления. Эти контуры не должны соприкасаться между собою.

Таким образом, вы сможете полностью заизолировать токопроводящие поверхности. Сделать монтаж системы заземления TT достаточно просто. Вот схема системы заземления TT, которая поможет выполнить монтаж.

Для монтажа системы вам необходимо по всему периметру здания провести защитный проводник PE. Проводник должен иметь вид пластины или прутка, которые должны соединяться отдельным контуром заземления.

Важно знать. Запрещается соединять заземленные части конструкции и корпуса электрооборудования с рабочим нулевым проводником N.

Требования и особенности системы заземления TT

Сейчас мы перечислим основные особенности, которые помогут выполнить монтаж системы:

Все групповые линии должны иметь УЗО уставка которого должна составлять не более 30 мА. Это необходимо для защиты от косвенного соприкосновения к токоведущим частям. Также это поможет обезопасить вашу жизнь при появлении неисправной проводки.

  • Нулевой проводник N

Нулевой рабочий проводник обязательно должен соединяться с местным контуром заземления и шиной PE.

  • Перенапряжение

Для того чтобы защитить все приборы от перенапряжения вам необходимо установить ограничители перенапряжения. Также вы можете установить ограничители импульсных перенапряжений.

  • Сопротивление контура заземления

Это сопротивление полностью должно удовлетворять ПУЭ. Для того чтобы определить действующее сопротивление необходимо провести измерение сопротивления заземления. Чтобы удовлетворить эти требования вам необходимо использовать один вертикальный заземлитель в виде уголка длиною около двух метров. При необходимости вы можете сделать несколько заземлителей. Контур заземления в частном доме можно подключить к этой системе.

Недостаток системы заземления TT

Система заземления TT имеет ряд преимуществ, о которых мы говорили выше. Также она может иметь и некоторые недостатки. На сегодняшний день естественным недостатком можно считать факт отказа УЗО и пробои фазы на заземленный корпус. В этом случае все проводники окажутся под напряжением сети.

Это может случиться из-за того, что выключатель не сработает при замыкании фазы на PE. Единой защитой, которая справится с этой проблемой, может служить система уравнивания потенциала. Выполнять монтаж системы заземления TT должны только специалисты. Они имеют необходимый опыт в этой сфере.

Система заземления TT — устройство и особенности использования

Электроэнергия в наши дома и квартиры приходит по электрическим проводам воздушных или кабельных линий от трансформаторных подстанций. Конфигурация этих сетей оказывает существенное влияние на эксплуатационные характеристики системы и, особенно — безопасность людей и бытовых приборов.

В электрических установках всегда существует техническая возможность повреждения оборудования, возникновения аварийных режимов, получения электротравм человеком. Правильная организация системы заземления позволяет снизить возможности проявления рисков, сохранить здоровье, исключить повреждения домашней техники.

Причины использования системы заземления ТТ

По своему назначению эта схема разработана для такого случая, когда высокую степень безопасности не могут обеспечить другие распространенные системы TN-S, TN-C-S, TN-С. Об этом очень четко говорит пункт ПУЭ 1.7.57.

Чаще всего это связано с низким уровнем технического состояния линий электропередач, особенно использующих оголенные провода, расположенные на открытом воздухе и закрепленные на опорах. Они обычно монтируются по четырехпроводной схеме:

тремя фазами подачи напряжения, смещенными по углу на 120 градусов между собой;

одним общим нулем, выполняющим совмещенные функции PEN-проводника (рабочего и защитного нуля).

Они приходят к потребителям от понижающей трансформаторной подстанции, как показано на фотографии ниже.

В сельской местности подобные магистрали могут иметь большую протяженность. Не секрет, что провода иногда схлестываются или обрываются из-за плохого качества скруток, падения веток или целых деревьев, набросов, порывов ветра, образования наледи в мороз после мокрого снегопада и по многим другим причинам.

При этом обрыв нуля происходит довольно часто, поскольку он монтируется нижним проводом. А это причиняет много бед всем подключенным потребителям из-за возникновения перекосов напряжений. В такой схеме отсутствует защитный РЕ-проводник, связанный с заземляющим контуром трансформаторной подстанции.

У кабельных линий вероятность обрыва нуля намного меньше потому что они расположены в закрытом грунте и лучше защищены от повреждения. Поэтому в них сразу реализуют наиболее безопасную систему заземления TN-S постепенно выполняют реконструкцию TN-C на TN-C-S. Потребители же, подключенные воздушными проводами, пока практически лишены такой возможности.

Сейчас многие владельцы земельных участков затевают строительство дачных домов, предприниматели организуют торговлю в отдельных павильонах и киосках, производственные предприятия создают быстровозводимые бытовые помещения и мастерские или вообще используют отдельные вагончики, которые временно запитывают электроэнергией.

Чаще всего подобные сооружения выполняются из хорошо проводящих электрический ток металлических листов либо имеют сырые стены с повышенной влажностью. Безопасность человека при нахождении в подобных условиях может обеспечить только система заземления, выполненная по схеме ТТ. Она специально рассчитана для работы в таких условиях, когда потенциал сети имеет высокую вероятность аварийного появления на токоведущих стенках или корпусах оборудования.

Принципы построения схемы заземления по системе ТТ

Главное требование безопасности в этой ситуации обеспечивается тем, что защитный РЕ-проводник создается и заземляется не на трансформаторной подстанции, а на самом объекте потребления электрической энергии без связи с рабочим N-проводником, подключенным к заземлителю питающего трансформатора. Эти нули не должны контактировать и объединяться даже в том случае, когда рядом смонтирован отдельный контур заземления.

Таким способом полностью отделяются защитным РЕ-проводником все опасные токопроводящие поверхности зданий из металла и корпуса подключенных электроприборов от действующей системы питания электроэнергии.

Внутри здания или строения монтируется защитный РЕ-проводник из прута или полоски металла, который служит в качестве шины для подключения всех опасных элементов, обладающих токопроводящими свойствами. С противоположной стороны этот защитный ноль соединяется с отдельным контуром заземления. Собранный таким методом РЕ-проводник объединяет все участки, имеющие риск появления опасного напряжения, в единую систему уравнивания потенциалов.

Подключение опасных металлических конструкций к защитному нулю может выполняться многожильным гибким проводом повышенного сечения, маркируемого полосками желто-зеленого цвета.

При этом еще раз заострим внимание на том, что категорически запрещается объединять элементы конструкций зданий и металлические корпуса электрических устройств с рабочим нулем N.

Технические требования обеспечения безопасности в системе ТТ

Из-за случайного нарушения изоляции электропроводки потенциал напряжения способен внезапно появиться в любом месте не подключенной, но токопроводящей части здания. Человек, прикоснувшийся к ней и земле, сразу оказывается под действием электрического тока.

Автоматические выключатели, защищающие от сверхтоков и перегрузок, могут только косвенно использоваться для снятия напряжения в этом случае, поскольку часть тока пойдет минуя цепочку рабочего нуля, а сопротивление контура основного заземления должно иметь очень низкое значение.

Чтобы обезопасить человека работой автоматических выключателей необходимо создать условие образования потенциала утечки на открытой токоведущей части не более 50 вольт относительно потенциала земли. На практике это выполнить сложно по ряду причин:

Читать еще:  Как проверить или узнать сопротивление тестером мультиметром

высокой кратности токов коротких замыканий времятоковой характеристики, используемых конструкциями различных выключателей;

большим сопротивлением контура заземления;

сложностью технических алгоритмов для работы подобных устройств.

Поэтому предпочтение в создании защитного отключения дается устройствам, реагирующим непосредственно на появление тока утечки, ответвляющегося от основного расчетного пути протекания нагрузки, через РЕ-проводник и локализацию его снятием напряжения с контролируемой схемы, что выполняют только УЗО или дифавтоматы.

Исключить риски получения электрических травм при этом способе заземления можно только при условии комплексного внедрения четырех основных задач:

1. правильная установка и эксплуатация защитных устройств типа УЗО или дифференциальных автоматов;

2. поддержание рабочего нуля N в технически исправном состоянии;

3. использование защитных устройств от перенапряжений в сети;

4. правильная эксплуатация местного контура заземления.

УЗО или дифавтоматы

Практически все части электропроводки здания должны быть охвачены зоной защиты этих устройств от возникновения токов утечек. Причем, их уставка на срабатывание не должна превышать 30 миллиампер. Это обеспечит отключение напряжения с аварийного участка при пробое изоляции электропроводки, исключит случайный контакт человека со стихийно возникшим опасным потенциалом, защитит от получения электротравмы.

Установка на вводном щите в дом противопожарного УЗО с уставкой в 100÷300 мА повышает уровень безопасности и обеспечивает введение второй степени селективности.

Рабочий ноль N

Чтобы схема УЗО правильно определяла токи утечек, необходимо создать ей для этого технические условия и исключить ошибки. А они возникают сразу при объединении цепей рабочего и защитного нулей. Поэтому рабочий ноль должен быть обязательно надежно отделен от защитного, а соединять их нельзя. (Третье напоминание!).

Защита от перенапряжений в сети

Возникновение электрических разрядов в атмосфере, связанные с образованием молний, носят случайный, стихийный характер. Они могут проявиться не только электрическим ударом в строение, но и попаданием в провода воздушной линии электропередач, что происходит довольно часто.

Энергетики применяют меры защиты от подобных природных явлений, но они не всегда оказываются достаточно эффективными. Большая часть энергии ударившей молнии отводится от ЛЭП, но какая-то ее доля оказывает вредное воздействие на всех подключенных потребителей.

Защититься от действия подобных всплесков завышенных напряжений, приходящих по питающей ВЛ, можно с помощью применения специальных устройства — ограничителей перенапряжений типа ОПН либо импульсных устройств защиты от перенапряжений (УЗИП).

Поддержание местного контура заземления в исправном состоянии

Эта задача возлагается в первую очередь на владельца здания. Никто другой самостоятельно заниматься подобным вопросом не будет.

Контур заземления зарыт своей большей частью в земле и таким способом спрятан от случайных механических повреждений. Однако, в почве постоянно находятся растворы различных кислот, щелочей, солей, которые вызывают окислительно-восстановительные химические реакции с металлическими деталями контура, образующими слой коррозии.

За счет этого ухудшается проводимость металла в местах контакта с грунтом и увеличивается общее электрическое сопротивление контура. По его величине судят о технических возможностях заземления и его способностях проводить токи неисправностей на потенциал земли. Делается это проведением электрических замеров.

Исправный контур заземления должен надежно пропустить к потенциалу земли ток уставки устройства защитного отключения, например, в 10 миллиампер и не исказить его. Только в этом случае УЗО правильно сработает, а система ТТ выполнит свое предназначение.

Если сопротивление контура заземления будет выше нормы, то оно станет препятствовать прохождению тока, уменьшать его, чем может полностью исключить защитную функцию.

Поскольку ток работы УЗО зависит от комплексного сопротивления цепи и состояния контура заземления, то существуют рекомендованные значения сопротивлений, которые позволяют обеспечивать гарантированное срабатывание защит. Эти величины показаны на картинке.

Измерение этих параметров требует профессиональных знаний и точных специализированных приборов, работающих по принципу мегаомметра, но использующих усложненный алгоритм с дополнительной схемой подключения и строгую последовательность вычислений. Качественный измеритель сопротивления контура заземления результаты своей работы хранит в памяти и отображает на информационном табло.

По ним с помощью компьютерных технологий строятся графики распределения электрических характеристик контура и анализируется его состояние.

Поэтому подобными работами занимаются аккредитованные электротехнические лаборатории со специальным оборудованием.

Замер сопротивления изоляции контура заземления необходимо делать сразу после ввода электроустановки в работу и периодически в процессе эксплуатации. Когда полученное значение выходит за пределы нормы, превышая ее, то создают дополнительные участки контура, подключаемые параллельно. Окончание правильности выполненных работ проверяют повторными измерениями.

Опасные неисправности схемы в системе ТТ

При рассмотрении технических требований обеспечения безопасности выделены четыре главные условия, решение которых должно выполняться комплексно. Нарушение любого пункта может привести к печальным последствиям во время пробоя сопротивления изоляции у фазного проводника.

Например, попадание фазы на корпус электроприбора при неисправном УЗО или нарушенном контуре заземления приведет к электротравме. Установленные в схеме автоматические выключатели могут просто не сработать, поскольку ток через них будет меньше уставки.

Частично исправить ситуацию в этом случае можно за счет:

введения системы выравнивания потенциалов;

подключения второй селективной ступени защиты УЗО на все здание, о которой уже упоминалось в рекомендациях.

Поскольку вся организация работ по созданию заземления системы ТТ является сложной и требует точного исполнения технических условий, то выполнение подобного монтажа следует доверять только подготовленным работникам.

Системы заземления TN, TNC, TNS, TNCS, TT, IT — основные отличия

Вступление

Заземление является основный мерой такой защиты. Именно по этому, нужно четко понимать и представлять, чем различаются системы заземления TN, TNC, TNS, TNCS, TT, IT придуманные, человечеством, в разных точках мира в зависимости от развития своих электросетей.

Что такое заземление

Фактически, заземление это намеренное (!) соединение частей электроустановки, которые могут проводить ток, с естественным или искусственным заземлителем.

В свою очередь, заземлитель это проводник, имеющий необходимый, поверхностный или глубинный, контакт с землей.

Формально, любой железный прут, вбитый в землю является заземлителем. Фактически, чтобы стать заземлителем, вбитый прут должен иметь нормативное электрическое сопротивление. По норме ПУЭ 7 разд. 1.7.101 это не более 2,4,8 Ом при 660, 380 и 220В (три фазы) и 380, 220 и 127В (одна фаза).

Также по нормативам, в качестве заземлителя могут выступать железные части строения и сооружений электрически связанные с землей. Но опятьтаки, при выполнении определенных условий. А именно: сопротивление должно быть в нормативе, напряжение прикосновение должно быть в нормативе и естественный заземлитель должен быть достаточно надежен, чтобы не разорваться в аварийной ситуации, например, при коротком замыкании.

Что такое нейтраль

В электротехнике нейтралью называют контакт, к которому подсоединены обмотки вырабатывающих генераторов или понижающих (повышающих) трансформаторов, используемых для питания сети.

  • Нейтраль обмоток трансформатора соединенную, с заземляющим устройством установки, называется глухозаземленной.
  • Нейтраль не соединенную, с заземлением, называют изолированной.
  • Есть нейтрали соединенные с землёй через сопротивления.

Что обозначают на схемах L1, L2, L3 и N

  • Буквой N на схемах и в документации обозначают провод (проводник) электропитания соединенный с глухозаземленной нейтралью.
  • Буквами L1, L2, L3 или A, B, C обозначают фазные проводники используемые для электропитания.

Что такое PE и PEN проводники

  • PE — обозначение нейтрального (не фазного) проводника, используемого для электробезопасности сетей.
  • PEN — это обозначение проводника, который одновременно является и рабочим нулём (N) и защитным проводником (PE).

Буквы используемые в аббревиатурах.

  • Буква «T», обозначает землю (terre);
  • «N» это нейтраль (neuter);
  • Буква «I» это изолированно (isole).

системы заземления: TN система

Система, при которой, нейтральный провод трансформатора глухо заземлен. Защита обеспечивается соединением неизолированных частей электрической установки, способных проводить ток, с глухо заземленной нейтралью трансформатора. Проводник в таком соединении называют, нулевой защитный проводник (PE).

Почти система TN. Однако, нулевой защитный (PE) и нулевой рабочий (N) проводники объединены в одном проводнике (PEN) на всей линии от трансформатора до электроустановки.

Почти система TN. Однако, в отличие от TNC, проводники N и PE не объединены, а разделены на всей линии от трансформатора до электроустановки.

TNCS подразумевает, что проводники PE и N объединены только, на участке линии.

системы заземления tn-c-s

TT (ти-ти)

TT подразумевает, что нейтраль трансформатора глухо заземлена, но открытые токопроводящие части установки заземлены через заземляющее устройства. Эти устройства элекетрически не связаны с нейтралью трансформатора.

IT (ай-ти)

IT, подразумевает, что нейтраль трансформатора либо изолирована от земли, либо заземлена через приборы (устройства), с большим сопротивлением. При этом открытые токопроводящие части установки заземлены локальным заземляющим устройством и не связаны с трансформатором.

системы заземления IT

Система заземления TT.

Система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

1 — заземлитель источника питания; 2 — открытые проводящие части;

3 — заземлитель корпусов оборудования

Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

где Ia— ток срабатывания защитного устройства;
Ra— суммарное спротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника. (ПУЭ1.7.59.)
В системе ТТ трансформаторная подстанция имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки, в системе заземления ТТ, непосредственно связаны с землей через электрически независимый от нейтрали трансформаторной подстанции заземлитель.
Нулевой проводник ВЛ или КЛ, в электроустановках с системой заземления TT, выполняет функции только нулевого рабочего проводника(N).

Система заземления TT разрешена относительно недавно в ПУЭ-7, а в редакции ПУЭ-6 система ТТ была запрещена:

Систему TT разрешили, когда стало возможным массовое применение узо.
Почему запрещено без узо?:
В системе, с электрически независимым от нейтрали трансформаторной подстанции заземлителем(система TT), при коротком замыкании на землю — вероятность того, что сработает автоматический выключатель очень мала(для этого нужно очень низкое сопротивление заземлителя, обеспечение большой кратности тока короткого замыкания и т.п.).
Автоматический выключатель, в системе TT, сработает только при коротком замыкании между рабочим нулём и фазой.

Вся электропроводка при применении системы заземления ТТ — должна находиться в зоне действия УЗО.
Эксплуатация системы ТТ без УЗО — запрещена . В системе заземления ТТ следует устанавливать более надёжное электромеханическое узо и особое внимание обращать на производителя оборудования — категорически не следует приобретать дешёвую продукцию с отечественной аббревиатурой и иностранными внутренностями.

Читать еще:  Ищем обрыв скрытой проводки


Пример:
Сопротивление независимого от нейтрали подстанции заземлителя загородного дома, например, составляет 10 Ом. Допустим возникает аварийная ситуация — «пробой» фазы на корпус холодильника или другого электроприёмника с токопроводящей частью. Аварийная электролиния находится в зоне действия только автоматического выключателя(без узо) с номиналом 16А.
Если рассчитать ток короткого замыкания, для данного случая, то величина максимального тока короткого замыкания будет около 16А. Этот ток в несколько раз меньше тока, при котором сработает электромагнитный расцепитель автомата. Например для автоматического выключателя с типом электромагнитного расцепителя «C», величина уставки: 5,0 — 10,0 Iн.
В итоге на корпусе электроприёмника возникнет потенциал, которого при определённом стечении обстоятельств — может хватить для «летального» исхода.

Как работает заземление ТТ? Принцип действия системы ТТ основан на полной изоляции токопроводящих элементов корпусов от глухозаземленной нейтрали источника питания. Если проще — все металлические корпуса электроприёмников подключаются к заземлению, не связанному с нулевым проводом электросети, через PE-проводник. При пробое на корпуса или на проводник РЕ- происходит утечка тока через заземлитель в землю и срабатывает УЗО.

Общие сведения о электросети с характеристикой ТТ в частном доме

Система заземления ТТ устанавливается в частном доме, в соответствии с ПУЭ 1.7.59, тогда, когда условия электробезопасности в системе заземления TN не могут быть обеспечены. Если проще — когда условия не позволяют выполнить повторное заземление нулевого провода(pen). Основной фактор влияющий на выбор системы заземления для электроустановки загородного дома — это техническое состояние питающей ВЛ:-неизолированные провода, отсутствие повторных заземлений на столбах и т.п. После оценки ситуации в конкретном месте — электромонтаж должен производить квалифицированный специалист.
Все электролинии в доме выполняются трёхпроводными — фазный — L, нулевой рабочий — N и защитный — РЕ проводники и должны быть в зоне действия УЗО с уставкой по току утечки не более 30 мА. Для повышения уровня защиты — дополнительно (п.7.1.84.) рекомендуется устанавливать на вводе УЗО с током срабатывания до 300 мА.

Монтаж системы ТТ это не только забивание заземлителя и его подключение к заземляющей шине, но и проверка его работоспособности.
Проверка работоспособности заземления производится квалифицированным специалистом путём создания искусственной аварийной ситуации отдельно на каждой электролинии дома — и в этом случае должна сработать дифзащита.
Важно отметить что для выполнения условий электробезопасности в полной мере — само заземление в системе ТТ (и не только) и электропроводка дома должны соответствовать ПУЭ (гл.1.7 и гл.7.1) и эти требования взаимосвязаны.

Ещё раз повторяем — Почему электросеть ТТ запрещена без установки УЗО?:
В системе, с электрически независимым от нейтрали трансформаторной подстанции заземлителем(система TT), при коротком замыкании на землю — вероятность того, что сработает автоматический выключатель очень мала(для этого нужно очень низкое сопротивление заземлителя, обеспечение большой кратности тока короткого замыкания и т.п.).
Автоматический выключатель, в системе TT, сработает только при коротком замыкании между рабочим нулём(N) и фазой(L).

Система заземления TT в частном доме

Основным методом предупреждения электротравм является защитное заземление металлического корпуса электроприборов. Надёжность этого вида защиты определяется вероятностью получения человеком электротравмы при нарушении изоляции между элементами, подключёнными к электросети, и корпусом.

В ПУЭ гл.1.7 описываются 5 схем заземления, отличающихся по своей конструкции, самой из которых является схема TN-S. Она предполагает наличие проводника РЕ, проложенного от подстанции до электроприбора. При отсутствии технической возможности смонтировать эту систему используется схема TN-C-S. В Правилах Устройства Электроустановок в п.7.1.13 указано, что этот тип защиты должен заменить схему типа TN-C.

В небольших домах с однофазной электропроводкой и двухжильным вводным кабелем использовать эту схему защиты затруднительно. В таких местах устанавливается система заземления TT.

Основным отличием этой схемы является то, что заземляющий проводник PE соединён не с заземлённой средней точкой вторичной обмотки питающего трансформатора, а с контуром заземления, который смонтирован рядом с зданием. Именно к нему присоединяются заземляющие контакты розеток и металлические корпуса электроприборов.

В данной статье рассмотрим принцип работы и схему исполнения системы заземления TT и в каких случаях ее предпочтительно применять.

Область применения

Защитное заземление типа ТТ отличается от других схем. Согласно ПУЭ 1.7.57 в бытовых сетях используется подключение сетей к трансформатору с глухозаземлённой нейтралью TN. В этой схеме питания заземляющие контакты в розетках и на клеммнике соединены с заземлённой нейтралью трансформаторной подстанции.

Схема защиты TN имеет несколько разновидностей, отличающихся способом соединения заземляющих контактов в розетке с зпземлённой средней точкой вторичной обмотки трансформатора:

  • TN-C — заземляющий проводник отсуствует. Вместо него используется нейтральный провод. Не обеспечивает необходимой безопасности, поэтому в жилых зданиях не применяется.
  • TN-C-S — от нейтрали питающего трансформатора проложен один проводник PEN, совмещающий функции нулевого и заземляющего проводников. В водном щитке в здании он разделяется на два провода — нейтраль N и заземление РЕ. Место разделения дополнительно заземляется. Это самая распространённая схема из-за простоты переоборудования в неё схемы защиты типа TN-C.
  • TN-S — заземляющий провод РЕ проложен от подстанции к электроприборам без разрывов и соединения с нейтралью. Самый надёжный метод защиты.

В ПУЭ гл.1.7 указаны условия выбора каждого из видов защиты. Если эти требования выполнить невозможно, то устанавливается система заземления TT. Чаще всего при заземлении дома схема TT в зданиях с вводом по воздуху, выполненным двумя проводами. Провода, проложенные ещё в советское время, в плохом состоянии и разделение PEN проводника на РЕ и N на вводе в дом не обеспечивает необходимого уровня защиты.

Ещё одна причина выполнить монтаж защиты здания по схеме TT — плохое техническое состояние магистральных воздушных линий. Согласно требованиям ПУЭ п.1.7.102 провод PEN должен заземляться на столбах, по которым он проложен. Естественно, за много лет, прошедших с момента прокладки, контур заземления на многих опорах вышел из строя.

Эти требования вызваны тем, что при обрыве провода РЕN и отсутствии повторного заземления на металлических элементах корпуса электроприбора окажется опасное для жизни напряжение.

В связи с этим система заземления TT применяется на дачах, в охотничьих домиках, временных сооружениях на стройках и других аналогичных ситуациях. Достоинство этой конструкции в том, что для изготовления заземления достаточно простого землеройного инструмента и электросварки.

В связи с тем, что сопротивление заземления может быть недостаточным для надёжной защиты и отключения автоматического выключателя, в ПУЭ п.1.7.59 указывается на обязательность установки УЗО или дифавтомата. Ток утечки, появляющийся при замыкании на корпус или прикосновении к элементам, находящимся под напряжением, человека, достаточен для срабатывания этой защиты.

Важно! Использовать заземление в качестве нейтрального провода нельзя. Это приведёт к быстрой коррозии контура и его разрушению.

Расшифровка обозначения схемы TT

Название и расшифровка системы заземления ТТ указывает на её основные особенности:

  1. 1. Т (англ. terra — земля) . Показывает, что нейтраль источника питания, как в системах TN, подключена к заземлению без автоматов и переключателей.
  2. 2. Т (англ. terra — земля) . Указывает, что все элементы корпуса подключены к защитному заземлению возле здания.

Из названия видно, что заземление РЕ не связано с питающим трансформатором и подключается к собственному контуру заземления. Именно наличие этого контура является основным отличием схемы заземления ТТ от систем типа TN, в которых корпус оборудования и заземляющие клеммы соединены с нейтралью источника питания проводами PE или PEN.

Схема исполнения системы заземления TT

Принцип работы защиты типа ТТ заключается в том, что провод заземления РЕ подключается к независимому контуру заземления и не связан с источником питания. При этом элементы конструкции здания и коммуникации оказываются заземлёнными и не соединёнными с источником питания.

Даже при установке трансформаторной подстанции рядом со схемой заземления TT контур нейтрали трансформатора и контур заземления не соединяются.

Важно! Соединять провода РЕ и N в системе TT между собой напрямую или через другие элементы запрещено. Это автоматически превращает схему в защиту типа TN-C-S

Какие требования предъявляются к системе TT

В ПУЭ 1.7.59 указывается, где применяется система заземления TT и основные технические условия для этой конструкции.

1. Установка УЗО

Система ТТ является более опасной и не обеспечивает такую же надёжную защиту от поражения электрическим током, как схема TN-S. Поэтому при монтаже этой схемы является обязательной установка на все линии электропроводки УЗО с порогом срабатывания тока утечки не более 30мА.

Такое требование аргументировано тем, что при перекрытии фазы на заземленный корпус оборудования ток короткого замыкания может быть настолько мал, что автоматический выключатель не сработает. Следовательно, единственной защитой в этом случае будет Устройство Защитного Отключения (УЗО).

2. Отсутствие связи между N и PE проводниками

Нейтральный провод N и заземляющий РЕ запрещено соединять между собой. Именно это разделение является отличительной особенностью системы типа ТТ.

В ПУЭ п.1.7.59 указано, что она применяется только в том случае, если требования для других схем защиты невозможно выполнить, а соединение N и РЕ преобразовывает схему TT в одну из систем типа TN, требования к которой в данной ситуации невыполнимы.

3. Качественный контур заземления

Одним из основных элементов защиты типа TT является контур заземления. В отличие от других схем он находится возле здания с этой защитной системой. Главным параметром контура является его сопротивление. Для надёжной работы контур необходимо регулярно осматривать и проверять его прибором для проверки заземления.

Достоинства и недостатки

У системы защиты типа ТТ есть достоинства, делающие её удобной для применения в некоторых случаях. Повреждения линии электропередач не влияют на безопасность людей, а монтаж заземления в электропроводке не требует замены или реконструкции питающей линии.

Опасность для жителей дома появляется только в случае одновременного отказа УЗО, нарушения изоляции между токоведущими частями и корпусом и нарушении работы заземляющего устройства. Именно контур заземления является слабым местом этой системы.

Для качественного монтажа этого элемента необходимо выполнить значительный объём земляных работ, а в дальнейшем конструкцию следует периодически осматривать и проверять по правилам, указанным в ПУЭ п. 1.8.36 .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector