400volt.ru

Домашнему электрику
16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы трансформатора

Трансформатор простыми словами

Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

Рис. 1. Промышленный трансформатор

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Рисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Рисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Если k > 1, то трансформатор повышающий, а при 0 Виды магнитопроводов

Более широкий спектр охватывает классификация по назначению.

Силовые

Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

Автотрансформаторы

Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Трансформатор тока

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Импульсные

В работе современной электронике применяются высокочастотные сигналы, которые часто необходимо отделить от других сигналов.
Задача импульсных трансформаторов – преобразования импульсных сигналов с сохранением формы импульса.

Для высокочастотных импульсных аппаратов выдвигаются требования о максимальном сохранении формы импульса на выходе. Имеет значение именно форма, а не амплитуда и даже не знак.

Сварочные

В работе сварочного аппарата важен большой сварочный ток. При этом, сетевое напряжение понижают до безопасного уровня. Благодаря мощному электрическому току дуговой разряд сварочного аппарата плавит металл.

В сварочном трансформаторе имеется возможность ступенчатого регулирования величины тока во вторичных цепях способом изменения индуктивного сопротивления, либо путем секционирования одной из обмоток.

Фото устройства представлено на рисунке 6. Обратите внимание на наличие коммутирующего переключателя.

Рис. 6. Трансформатор для сварочного полуавтомата на броневом магнитопроводе

В сварочных аппаратах применяют конструкции на основе однофазных трансформаторов, а также с применением трехфазных трансформаторов. Для сварки некоторых металлов, например, нержавейки, сварочный ток выпрямляют.

Разделительные

Устройства, в которых нет электрической связи между обмотками, называют резделительными трансформаторами. Силовые разделительные аппараты применяются для повышения безопасности электросетей. Другая область применения разделительных трансформаторов – обеспечение гальванической развязки между отдельными узлами электрических цепей.

Согласующие

Данные типы аппаратов применяют для согласования сопротивления каскадов электронных схем. Они обеспечивают минимальное искажение формы сигналов, создают гальванические развязки между узлами электронных устройств.

Пик-трансформаторы

Аппараты, преобразующие синусоидальные токи в импульсные напряжения. Полярность выходных напряжений меняется через каждых полпериода.

Воздушные и масляные

Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

Рисунок 7. Сухой трехфазный трансформатор

При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

Рис. 8. Строение промышленного трансформатора с масляным охлаждением

Сдвоенный дроссель

Конструктивно такой аппарат является трансформатором с одинаковыми катушками. Катушки одинаковой мощности образуют встречный индуктивный фильтр. Эффективность аппарата выше, чем у дросселя (при одинаковых размерах).

Вращающиеся

Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

Обозначение на схемах

Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

Пример обозначения

На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

Области применения

Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.

Принцип работы силового трансформатора

Трансформаторные будки есть практически на каждой улице любого города вне зависимости от размеров. Вся планета подвержена власти электричества. Что такое силовой трансформатор? Для чего они? Принцип работы силового трансформатора? При должном объяснении все станет понятно любому школьнику.

Зачем это нужно?

Трансформатор служит для повышения или понижения подаваемой электроэнергии. Зачем нужно преобразовывать ток? Смысл в том, что согласно закону Джоуля-Ленца тепло, которое выделяет проводник при прохождении по нему электрического тока выделяется в зависимости от силы тока. Причем зависимость эта квадратичная, так как сила тока в формуле имеет вторую степень.

На практике это означает, что увеличение силы тока в 2 раза приведет к увеличению тепловыделений в 4 раза. Все бы ничего, но закон сохранения энергии пока никто не отменял. На нагрев проводника расходуется электроэнергия, которую с таким трудом добывает человечество. Единственный выход: повысить напряжение до максимум.

Согласно закону Ома всегда сохраняется некое равенство: произведение силы тока на сопротивление равняется напряжению в сети. Предположим, что сопротивление не изменяется, так как оно зависит от свойств проводящего материала. Тогда единственным выходом будет максимально задрать напряжение, чтобы уменьшить силу тока в сети.

Высоковольтные линии придумали не ради развлечения. Единственная цель столь сложной системы с трансформаторами: максимальное сокращение потерь.

Принцип работы силового трансформатора

Чтобы говорить о принципе работы силового трансформатора требуется вспомнить некоторые понятия из школьного курса физики. В итоге будет проще понять объяснения рабочей схемы устройства.

Индукция

Чтобы понять, как работает силовой трансформатор, надо разбираться в понятии индукции. Именно на ней основана львиная доля современной электроники. Суть этого явления в том, что при прохождении через проводник ток создает переменное электрическое поле. Движение электронов в свою очередь порождает переменное магнитное поле, которое при попадании в другой проводник породит так переменное электрическое поле.

То есть, если поставить рядом два проводника, причем один из них подключить к источнику тока, а другое не подключать – электричество будет течь в обоих проводниках. Причем во втором проводнике направление тока будет противоположным таковому в исходном варианте.

Свойство индукции используется достаточно часто: в усилителях, передатчиках и, конечно, школьных опытах

Устройство трансформатора

Корпус аппарата представляет собой бак, в который заливается масло. Масло насыщается минералами, чтобы лучше отводить тепло. Выбросы тепловой энергии при работе трансформатора огромны. Однако даже такие потери в тысячи раз меньше возможных утечек энергии при транспортировке.

Масло циркулирует по внутреннему и внешнему контуру трансформатора. Отдельно отметим, что внешний контур часто представляет собой оребренный радиатор. Увеличение площади теплоотдачи приводит к улучшению отдачи тепла. Проще говоря, чем больше площадь соприкосновения масла из внутреннего контура и внешнего радиатора – тем лучше будет отводится тепло, тем меньше вероятность аварии на трансформаторной подстанции.

Само устройство силового трансформатора представляет собой квадратного сечения сердечник, набранный из тонких электростальных пластинок. Используются именно наборные сердечники, чтобы свести к минимум появление самоиндукционных токов, которые приводят к перегреву и увеличению потерь энергии.

На противоположные стороны квадрата наносят обмотку. Обмотка, на которую поддается ток, называется первичной, обмотка, отдающая преобразованную энергию, вторичной.

Принцип работы

Схема работы силового трансформатора выглядит так:

  1. Ток подается на первичную обмотку.
  2. Первичная обмотка в результате прохождения электрического тока начинает генерировать переменное магнитное поле.
  3. Магнитное поле, проходящее сквозь вторичную обмотку, вызывает в ней электрический ток.

Вес секрет процесса в количестве витков. Отношение принятого напряжения к отданному равняется отношению количества витков первичной обмотки к количеству витков вторичного обмотки. Это же отношение называют коэффициентом трансформации. То есть коэффициент показывает, во сколько раз уменьшится или увеличится выходное напряжение на подстанции.


Схема простейшего трансформатора

Почему трансформатор называют силовым

Как мы уже сказали, силовые трансформаторы используют для понижения высоковольного тока до приемлемых для города параметров, то есть 220/360 В – в зависимости от местности и прочих условий. Но нужно отметить, что напряжение высоковольтных линий ненамного больше 1000 к В, а это больше миллиона вольт. Именно за трансформацию столь сильного напряжения, устройство и назвали таким красивым именем.


Установленный силовой трансформатор

Именно силовые трансформаторы используются для преобразования электричества городских и квартальных сетей. Получается многоступенчатая система снабжения страны электроэнергией:

  1. Сначала повышающие трансформаторы увеличивают напряжение до огромных значений
  2. По проводам ток течет в города и села
  3. Понижающие трансформаторы понижают напряжение сначала до общегородских, а потом и до квартальных значений.
Читать еще:  Напряжение переменного тока

Отдельно нужно сказать, что иногда приходится понижать значение напряжения до 360 В в городе, потому что высоковольтные линии проводить в городской черте запрещено.

Виды трансформаторов

Уже были названы повышающие и понижающие трансформаторы. В зависимости от места использования можно выделить сетевые и силовые аппараты. Сетевые трансформаторы используются в устройствах, поскольку даже квартальные параметры тока слишком высоки для простого телевизора или ноутбука. Поэтому используется трансформатор, чтобы преобразовать ток в подходящий для конкретного предмета бытовой техники.

Сразу использовать маленькие параметры в городе нельзя из тех же соображений экономии. К тому же, разные приборы требуют разных параметров – всем производителям электроники не угодишь, а потому проще каждому встраивать в свой прибор трансформатор.

Отдельной строкой идут автомобильные трансформаторы, которые позволяют заводить машину с использованием небольшого электрического импульса. Выделяют и импульсные и многие другие трансформаторы, но всех их объединяет одно: принцип работы. Отличия кроются только в рабочих параметрах тока и предназначении трансформатора.


Сетевой трансформатор

Контроль работы устройства

Во время сервисных работ строго запрещается заглядывать внутрь бака, сливать полностью масла и проводить какие-либо манипуляции с содержимым корпуса трансформатора. Работоспособность изделия проверяется путем химической оценки пробы масла и холостого подключения аппарата. В результате удается узнать, насколько трансформатор работоспособен в данный момент времени.

Даже к месту монтажа привозят уже готовую конструкцию, которую остается только подключить к сети. Заливка маслом производится на заводе, не говоря уже о более сложных процедурах. Для доставки оборудования используется специализированная техника.

Назначение и принцип действия силовых трансформаторов

Трансформатор нужен для преобразования электрической энергии одного напряжения к электрической энергии другого напряжения. Используется для повышения или понижения напряжения. Нет разницы в понижении или повышении, так как трансформатор является обратимой электрической машиной (возможно преобразование электроэнергии как в большую, так и меньшую сторону). Однако производители выпускают их для определенных целей – или повышающим или понижающим трансом.

На электрической станции турбогенератором вырабатывается электроэнергия с генераторным напряжением, например 15кВ, далее она трансформируется повышающими трансформаторами (описываемые элементы обозначены на схеме) до напряжения линии электропередач (например, 35кВ, 110кВ, 220кВ, 330кВ, 750кВ). Далее по ЛЭП электроэнергия передается к потребителям и снижается через понижающие трансформаторы до величины 10, 6, 0,4кВ.

Зачем передачу электроэнергии делают на высокие напряжения? Это необходимо для снижения потерь электроэнергии, что достигается увеличением напряжения. Какие бывают трансформаторы

  • самыми распространенными являются силовые трансформаторы различных величин полной мощности, предназначенные для передачи и распространения электроэнергии
  • существуют силовые трансформаторы специального назначения – сварочные, печные
  • трансформаторы тока и напряжения (измерительные и релейные) тоже относятся к трансформаторам
  • испытательные трансформаторы – для подачи высокого напряжения для проверки прочности изоляции
  • а также радиотрансформаторы, импульсные трансформаторы, пик-трансформаторы

Трансформаторы подразделяются на разные виды в зависимости от числа обмоток на двухобмоточные и многообмоточные (одна первичная и одна или несколько вторичных обмоток).

В зависимости от числа фаз – однофазные, трехфазные, многофазные.

По способу охлаждения – масляные, сухие.

Принцип действия трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Возьмем для примера двухобмоточный однофазный трансформатор. К первичной обмотке подключается источник переменного тока. Этот ток протекает по обмотке и создает переменный магнитный поток Ф, который пронизывает обмотки трансформатора и изменяясь наводит в них ЭДС. Так как обмотки имеют различное число витков, то и величина ЭДС будет в них различная.

В повышающих трансах вторичное напряжение будет больше первичного, а в понижающих – наоборот. К вторичной обмотке подключается нагрузка и возникает вторичный ток, созданный индуцируемой магнитным потоком ЭДС. Таким образом, в трансформаторе происходит передача электроэнергии из первичной обмотки с напряжением U1 и током I1 во вторичную обмотку с током I2 и напряжением U2 посредством магнитного потока.

Устройство трехфазного силового трансформатора

Основными частями трансформатора являются магнитопровод и обмотка. Магнитопровод собирается из листов электротехнической стали толщиной 0,3-0,5мм. Изоляция листов представляет собой покрытие лаковой пленкой листа стали с обеих сторон. Магнитопровод разделяется на стержни и ярмо. Стержень это вертикальная часть магнитопровода, на которую насаживается обмотка. Ярмо – это горизонтальная часть, которая замыкает магнитный поток.

Трехфазные трансформаторы чаще всего выполняются с тремя стержнями (стержневой тип), на которых располагаются три обмотки. Соединение стержней и ярма бывает двух видов – стыковое и шихтованное. Стыковое соединение – ярмо и стержни крепятся соединительными деталями, при этом удобно снимать обмотки. При шихтованном соединении – ярмо и стержни собираются листами стали внахлест, в этом случае уменьшается магнитное сопротивление магнитопровода за счет уменьшения воздушного зазора. Также механическая прочность шихтованного соединения выше, чем у стыкового соединения.

Обмотки трансформатора выполняют из медного проводника круглого или квадратного сечения. Изоляцией выступает кабельная бумага или хлопчатобумажная пряжа.

Магнитопровод с баком заземляют, для безопасности на случай обрыва обмотки.

В масляных трансформаторах магнитопровод с обмоткой опускают в бак, залитый трансформаторным маслом. Масло отбирает тепло от обмоток. Характеристики масла выше, чем у воздуха, следовательно, габариты масляного трансформатора и сухого трансформатора одной мощности более выигрышны у масляного трансформатора.

При изменении климатических условий уровень масла может меняться. Происходит это не в баке трансформатора, а в специальном расширителе, который представляет собой сосуд на крышке бака, сообщающимся с ним.

При ненормальных режимах, таких как короткие замыкания, может изменяться давление масла, из-за выделения газов в масле. Для сброса этого давления на трансформаторах используют выхлопную трубу. На верхней части трубы находится стеклянная пластина. При повышении давления пластина разлетается, и давление выходит из трансформатора.

На мощных трансформаторах предусмотрено газовое реле. При повышении давления из-за выброса газов (например, при коротких замыканиях внутри трансформатора) происходит срабатывание реле и идет сигнал на отключение выключателя. После чего трансформатор отключается от сети.

Соединение обмоток с сетью происходит через ввода трансформатора. Они бывают различной конструкции: с главной изоляцией фарфоровой покрышки, конденсаторные проходные изоляторы, с бумажно-масляной, полимерной, элегазовой, маслобарьерной изоляцией.

В трансформаторах встречается возможность изменять число витков обмоток (группы соединения обмоток). Для этих целей используются ПБВ (переключатель числа витков без возбуждения) и РПН (регулирование числа витков под нагрузкой).

Включение трансформаторов на параллельную работу

Стоит отличать данный режим (1 на рисунке ниже — трансформаторы подключены к общим шинам как со стороны ВН, так и со стороны НН) от другого, когда подключение к общим шинам есть только с высокой стороны (2 на рисунке, совместная работа), то есть к секции 10кВ подключены два транса, а с низкой стороны каждый из них питает свою секцию 0,4кВ.

Если отключается один из Т (1 на рис.), то на втором происходит перегрузка, но все механизмы остаются в работе. Если же отключается один из трансов (2 на рис.) — то нагрузка либо отключается, либо переходит на резервный источник питания по АВР.

Ну и естественно расчет схем замещения для данных случаев будет разным:

  • 1 — складываем // сопротивления двигателей, затем складываем // иксы трансформаторов, а затем последовательно первое со вторым
  • 2 — суммируем ветви (двигатель плюс трансформатор), затем полученные иксы складываем параллельно

Далее буду рассматривать только схему под цифрой 1 на рисунке. Для чего же может применятся параллельная работа трансформаторов:

  • повышается надежность, так как при выходе из строя одного из трансов, потребитель не лишается энергии.
  • резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого
  • при сезонных снижениях нагрузки (зимой больше нагрузки, летом меньше) возможно отключение одного из нескольких. При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода

Все плюсы улетучиваются, если установлено два транса по причине нехватки мощности одного из-за роста нагрузки например.

Условия параллельной работы:

    Равенство номинальных напряжений первичных и вторичных обмоток. Следовательно и одинаковое число витков первичных и вторичных обмоток для всех параллельно работающих трансформаторов. Так же перед включением необходимо проверять положения ПБВ и РПН. Если всё подобрано правильно то не должны возникать уравнительные токи. Они возникают из-за неравенства коэффициентов трансформации и текут даже в режиме холостого хода. Воспользовавшись схемой аналогичной схеме замещения ТТ, можно вывести формулу уравнительного тока:

В данной формуле U’, U»; I’, I» — напряжения и токи первого и второго;

uk1, uk2 — напряжения короткого замыкания в процентах;

Избавиться от уравнительного тока можно либо переключив устройства регулировки в нужное положение, либо, устроив ремонт, добиться одного числа намотанных витков.

  • Равенство напряжений короткого замыкания. Напряжение короткого замыкания — такое напряжение, которое необходимо подать в одну из обмоток при замкнутой второй, чтобы в обеих тек номинальный ток. Данное условие необходимо выполнять потому, что отношение uk пропорционально распределению нагрузок и токов.
  • Принадлежность к одной группе присоединения
  • Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1. Если отношение мощности будет больше трех, то перегрузка меньшего из Тр может быть больше допустимой и целесообразнее будет вообще его отключить.
  • По ГОСТ 11677-85 ни одна из обмоток не должна быть перегружена током больше допустимого для данной обмотки
  • Если имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы. Трансформаторы с РПН мощностью ниже 1000кВА не предназначены для параллельной работы
  • Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех машин.
  • Первичные и вторичные обмотки соединяются параллельно. При отключении одного, на втором Т возникает перегрузка, которая должна быть учтена при отстройке уставки МТЗ.

    На // подключенных т мощностью 4 МВА и выше должна устанавливаться ДЗТ. Она производит быстрое и селективное срабатывание, отключая только поврежденное оборудование. В случае с МТЗ, при аварии со стороны НН могут отключиться оба трансформатора за счет равенства выдержек времени.

    Для более глубокого погружения в данный вопрос рекомендую прочитать книгу Г.В. Алексенко — Параллельная работа трансформаторов и автотрансформаторов (Трансформаторы, вып. 17) — 1967 года.

    Сохраните в закладки или поделитесь с друзьями

    Устройство и принцип работы трансформатора тока

    Время на чтение:

    Трансформатор тока (ТТ) — статическое электромагнитное устройство, где первичная обмотка подсоединена к источнику питания, а вторая — к измерительным или защитным аппаратам, обладающим малым сопротивлением. Преобразователи широко применяются для измерения величины тока и в агрегатах релейной защиты энергетических систем. Они обеспечивают полную безопасность проведения измерений в высоковольтных линиях.

    Особенности конструкции

    При работе трансформатора тока вторичная обмотка всегда находится под нагрузкой, сопротивление которой регулируется требованиями к точности коэффициента трансформации. Допускается незначительное отклонение сопротивления от указанного в паспорте устройства.

    Если произойдет увеличение нагрузки, то во второй обмотке резко возрастет напряжение, что может привести к пробою изоляции и поломке устройства. Такая ситуация создает угрозу безопасности сотрудникам, которые обслуживают электрический прибор. В устройство трансформатора тока входят:

    • основание;
    • магнитопровод (сердечник);
    • первичная обмотка;
    • вторичная обмотка;
    • клеммник для подсоединения кабеля от источника питания;
    • заземляющий контакт.

    Первичная обмотка изготавливается в виде катушки, закрепленной на магнитопроводе, или как шина. Согласно конструктивного исполнения в некоторых устройствах нет встроенной первичной катушки, а дополняется она обслуживающим персоналом путем соединения отдельного провода через специальное окно.

    Корпус устройства выполняет роль изоляции и предохранения обмоток от внешних повреждений. В последних моделях устройств сердечники изготавливаются из нанокристаллических сплавов, которые значительно увеличивают класс точности прибора.

    Из-за больших потерь в сердечнике устройство начинает сильно нагреваться, что приводит к износу или выходу из строя его изоляции. Вторая обмотка в разомкнутом состоянии также создает негативное явление, так как происходит перегрев и выгорание магнитного провода.

    Основной характеристикой прибора считается коэффициент трансформации, который обозначает отношение номинального тока в первичной обмотке к такому же значению во вторичной. Реальное значение этого коэффициента несколько отличается от номинального, что объясняется степенью погрешности прибора.

    Связано это с тем, что в магнитных конструкциях имеются потери, связанные с намагничиванием и нагревом магнитопровода. Чтобы несколько сгладить эти погрешности производители используют витковую коррекцию.

    Назначение устройства

    По своему назначению трансформаторы тока относятся к специальным вспомогательным устройствам, применяемых в комплексе с различной измерительной аппаратурой и защитными механизмами в сетях переменного тока.

    Принципом работы трансформатора тока считается преобразование любых величин, которые приобретают более воспринимаемые значения для получения информации и обеспечения питания защитных реле. Благодаря изоляции аппаратов, сотрудники обслуживающей организации надежно защищены от поражения током. Все виды трансформаторов могут служить для двух функций:

    1. Измерение силы тока в цепи — с их помощью передаются данные на измерительные приборы, которые подключены ко вторичной обмотке. В этом случае трансформатор может преобразовать ток высокой величины в более приемлемые параметры.
    2. Предохранительные действия — устройства в первую очередь передают данные на защитные аппараты и приборы управления. С помощью трансформаторов электрические показатели преобразуются для питания релейного оборудования.

    По своему назначению и принципу действия трансформаторы тока способствуют подсоединению измерительных приборов к энергетическим линиям высокого напряжения, когда нет возможности подключить их напрямую. Они нужны для передачи снятых показаний на аппаратуру измерения, которая подключается ко вторичной обмотке.

    Кроме того, преобразователи проводят наблюдение за состоянием электрического тока в цепи, к которому они подключены. При подсоединении к силовой автоматической защите устройство проводит мониторинг сетей, наличие и состояние заземления. Если ток достигает максимального значения, то автоматически включается защита и останавливается работа всего оборудования.

    Принцип действия

    Работает трансформатор тока на основе закона электромагнитной индукции. Из внешнего источника питания поступает напряжение на клеммы устройства, которые непосредственно связаны с первичной обмоткой, обладающей конкретным количеством витков. В результате образуется магнитный поток вокруг катушки, который улавливает сердечник.

    Читать еще:  4 способа проверки работоспособности УЗО

    Благодаря этому, потери показаний в процессе преобразования будут незначительными. Когда ток пересекает вторичную обмотку, то магнитный поток активирует электродвижущую силу, под влиянием которой происходит преодоление сопротивления катушки и нагрузки на выходе.

    Параллельно с этим процессом происходит снижение напряжения со вторичной обмотки. Если происходит короткое замыкание во вторичной обмотке или подключение к ней нагрузки, то под воздействием электродвижущей силы в ней возможно определение вторичного тока.

    Классификация приборов

    Все разновидности агрегатов классифицируются в зависимости от конструкции и того, какими техническими показателями обладают. Кроме измерительных и защитных трансформаторов, бывают промежуточные виды этих преобразователей. В этом случае прибор подключается для проведения измерения в цепь релейной защиты.

    Выделяются лабораторные виды преобразователей, которые обладают повышенной точностью измерения и множеством коэффициентов трансформации. Токовые трансформаторы подразделяются:

    1. По способу установки — преобразователь предназначен для наружного и внутреннего монтажа. Компактные модели могут быть переносными или встраиваются в машины и электрические аппараты. Наружный и внутренний монтаж подразумевает проходной или опорный способ установки.
    2. В зависимости от типа первичной обмотки — оборудование подразделяется на одновитковые, стержневые, многовитковые, катушечные и шинные устройства.
    3. При изолировании трансформаторов применяются: бакелит, фарфор и другие материалы. Некоторые марки устройств для изоляции заливаются компаундом.

    От того как устроен преобразователь, он может иметь одну или две ступени. Эксплуатационное напряжение устройств находится в диапазоне до 1 тыс. В и выше. Все необходимые технические данные имеют буквенные, цифровые обозначения и присутствуют на соответствующих бирках.

    Популярные модели

    Любая выпускаемая марка прибора обладает отдельными параметрами и техническими характеристиками. Отечественные производители выпускают большое количество этих устройств. К ним относятся:

    1. ТОЛ-НТЗ-10−01 — выпускается Невским трансформаторным заводом «Волхов» и используется для передачи показаний к измерительной аппаратуре. Кроме того, его применяют в электрических цепях с устройствами защиты и управления. Преобразователь выпускается в виде опорной конструкции второй категории размещения. Прибор применяется в сетях с напряжением до 10 кВ и обладает сроком службы до 30 лет.
    2. ТОП-0,66 — применяются в энергетических сетях переменного тока с напряжением до 0,66 кВ. Корпус устройства изготовлен из негорючего материала. Эксплуатация агрегата возможна в диапазоне температур от -45 до +50 °C и в любом положении. Первичная шина трансформатора состоит из меди, покрытой оловом.
    3. ВВ, ВВО — проходные шинные трансформаторы тока, изготовленные в компаундном корпусе. Используют приборы в сетях переменного тока напряжением до 24 кВ. Обладают механическим изменением коэффициента трансформации на обеих обмотках.

    Трехфазные устройства подключаются в сеть «треугольником» или «звездой». В первом случае удается получить большое значение тока во вторичной обмотке, а во втором — возможно отследить значение тока в каждой фазе.

    Принцип работы, устройство и виды трансформаторов

    Человеку, мало знакомому с электрикой сложно представить себе, что такое трансформатор, где он задействован, назначение элементов его конструкции.

    • 1 Общая информация об устройстве
    • 2 Конструкция
    • 3 Принцип работы
    • 4 Классификация по видам
      • 4.1 Силовые
      • 4.2 Автотрансформаторы
      • 4.3 Трансформаторы тока
      • 4.4 Трансформаторы напряжения
      • 4.5 Импульсные
      • 4.6 Разделительные
      • 4.7 Согласующие
      • 4.8 Пик-трансформаторы
      • 4.9 Сдвоенный дроссель
    • 5 Режимы работы
      • 5.1 Холостой ход (ХХ)
      • 5.2 Режим нагрузки
      • 5.3 Короткое замыкание (КЗ)

    Общая информация об устройстве

    Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования тока переменной частоты с одним напряжением в переменный ток с иным напряжением, но с прежней частотой, основанный на явлении электромагнитной индукции.

    Применяются приборы во всех сферах деятельности человека: электроэнергетике, радиотехнической, радиоэлектронной промышленности, бытовой сфере.

    Конструкция

    Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.

    Важнейшие конструктивные части следующие:

    • обмотка;
    • каркас;
    • магнитопровод (сердечник);
    • охлаждающая система;
    • изоляционная система;
    • дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.

    В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.

    Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.

    Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.

    Производство приборов налажено в трех базовых концепциях обмоток:

    • броневой;
    • тороидальной;
    • стержневой.

    Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.

    Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.

    Принцип работы

    Принцип работы трансформатора базируется на эффекте взаимоиндукции. Поступление тока переменной частоты от стороннего поставщика электроэнергии на вводы первичной обмотки формирует в сердечнике магнитное поле с переменным потоком, проходящего через вторичную обмотку и индуцирующее образование электродвижущей силы в ней. Закорачивание на приемнике электроэнергии вторичной обмотки обуславливает прохождение сквозь приемник электротока из-за влияния электродвижущей силы, вместе с тем в первичной обмотке образуется ток нагрузки.

    Назначение трансформатора — перемещение преобразованной электрической энергии (без перемены ее частоты) к вторичной обмотке из первичной с подходящим для функционирования потребителей напряжением.

    Классификация по видам

    Силовые

    Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.

    Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.

    Автотрансформаторы

    Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.

    Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.

    Трансформаторы тока

    Данным термином принято обозначать прибор, запитанный непосредственно от поставщика электроэнергии, применяющийся в целях понижения первичного электротока до подходящих значений для использующихся в измеряющих и защитных цепях, сигнализации, связи.

    Первичная обмотка трансформаторов электротока, устройство которых предусматривает отсутствие гальванических связей, подключается к цепи с подлежащим определению переменным электротоком, а электроизмерительные средства подсоединяются к вторичной обмотке. Текущий по ней электроток примерно соответствует току первичной обмотки, поделенному на коэффициент трансформирования.

    Трансформаторы напряжения

    Назначение этих приборов — снижение напряжения в измеряющих цепях, автоматики и релейной защиты. Такие защитные и электроизмерительные цепи в устройствах различного назначения отделены от цепей высокого напряжения.

    Импульсные

    Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды.

    Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.

    Разделительные

    Что такое трансформатор разделительный становится понятно исходя из самого определения — это прибор с первичной обмоткой, не связанной электрически (т.е. разделенной) с вторичными.

    Существует два типа таких устройств:

    • силовые;
    • сигнальные.

    Силовые применяются с целью улучшения надежности электросетей при непредвиденном синхронном соединении с землей и токоведущими частями, либо элементами нетоковедущими, оказавшимися из-за нарушения изоляции под напряжением.

    Сигнальные применяются в целях обеспечения гальванической развязки электроцепей.

    Согласующие

    Как работает трансформатор данного вида также понятно из его названия. Согласующими называются приборы, применяющиеся с целью согласования между собой сопротивления отдельных элементов электросхем с приведенным к минимуму изменением формы сигнала. Также устройства такого типа используются для исключения гальванических взаимодействий между отдельными частями схем.

    Пик-трансформаторы

    Принцип действия пик-трансформаторов базируется на преобразование характера напряжения, от входного синусоидального в импульсное. Полярность после перехода изменяется по прошествии половины периода.

    Сдвоенный дроссель

    Его азначение, устройство и принцип действия, как трансформатора, абсолютно идентичны приборам с парой подобных обмоток, которые, в данном случае, абсолютно одинаковы, намотанны встречно или согласованно.

    Также часто можно встретить такое наименование данного устройства, как встречный индуктивный фильтр. Это говорит о сфере применения прибора – входная фильтрация напряжения в блоках питания, звуковой технике, цифровых приборах.

    Режимы работы

    Холостой ход (ХХ)

    Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

    Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

    Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

    • КПД;
    • показателя трансформирования;
    • потерь в магнитопроводе.

    Режим нагрузки

    Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

    На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

    Короткое замыкание (КЗ)

    Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

    Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

    Такой режим характерен для приборов измерительного типа.

    Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.

    Трансформатор: назначение, принципы работы и правила подключения

    Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке. Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора. Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.

    1. Трансформаторы напряжения: назначение и принцип действия
    2. Для чего нужен трансформатор напряжения?
    3. Как работает трансформатор напряжения?
    4. Чем отличается трансформатор тока от трансформатора напряжения?
    5. Измерительные трансформаторы напряжения и тока
    6. Номинальная мощность, напряжение и ток
    7. Закон Фарадея
    8. Уравнения идеального трансформатора
    9. Как правильно подключить

    Трансформаторы напряжения: назначение и принцип действия

    Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.

    Состоит статический трансформатор из:

    • первичной и вторичной обмотки;
    • сердечника.

    Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:

    • снижает потери энергии;
    • уменьшает площадь сечения проводов ЛЭП.

    • повышающий;
    • понижающий;
    • силовой;
    • вращающийся;
    • импульсный;
    • разделительный;
    • согласующий.

    Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.

    Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.

    Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.

    Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.

    Принцип действия устройства основан на:

    • изменении магнитного потока;
    • создании электромагнитной индукции при прохождении через обмотку;
    • подаче напряжения на первичную обмотку;
    • воспроизведении магнетизма электрическим током, изменяющимся во времени.
    Читать еще:  Токоизмерительные клещи

    Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток. Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.

    Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.

    Для чего нужен трансформатор напряжения?

    Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

    • электроустановках;
    • блоках питания;
    • агрегатах передачи электроэнергии;
    • устройствах обработки сигналов;
    • источниках питания приборов.

    Силовой трансформатор с большим напряжением применяется для:

    • подачи энергии в электросети на электростанциях;
    • повышения напряжения генератора, линии электропередач;
    • снижения напряжения, доходящего до потребительского уровня.

    Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

    Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

    Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

    Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

    Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

    Как работает трансформатор напряжения?

    Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

    Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

    Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

    Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

    Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

    Чем отличается трансформатор тока от трансформатора напряжения?

    Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

    Отличие между устройствами в разных электрических величинах и схемах включения.

    Измерительные трансформаторы напряжения и тока

    Приборы с работой под высоким напряжением нуждаются в периодическом измерении.

    Для чего этих целей в помощь – измерительные устройства, которые:

    • снижают величину напряжения до нужного уровня;
    • обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.

    Номинальная мощность, напряжение и ток

    Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

    Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.

    Порог номинального напряжения у трансформатора – 10кВ.

    Разница в зависимости от мощности электроприборов составляет для:

    • питания электроприемников – 3-6,3кВ;
    • крупногабаритных электродвигателей – до 1000В.

    Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

    Закон Фарадея

    По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

    Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля. Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

    Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

    Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

    Уравнения идеального трансформатора

    В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

    Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

    Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

    • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
    • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

    Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

    Как правильно подключить

    Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.

    Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

    1. При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
    2. Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
    3. Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
    4. Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

    Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

    Подключение трансформатора напряжения

    Дополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.

    При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно. Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

    Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.

    Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

    При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

    Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

    Как действует трансформатор? Принцип работы трансформатора

    Трансформатор – это регулирующее устройство, которое достаточно часто используется для того, чтобы повысить эффективность многих устройств. Эти устройства могут использоваться для повышения и понижения напряжения в сети. В этой статье вы узнаете принцип работу трансформатора тока.

    Принцип работы трансформатора тока

    Измерительные трансформаторы имеют достаточно простой принцип работы. Его работа подчиняется закону про электромагнитную индукцию. Если разобраться более детально, то взаимная индукция будет отвечать за действие преобразования напряжения. В соответствии с этим законом Фарадей гласит: «скорость изменения потокосцепления будет пропорциональной наведенной ЭДС в проводнике».

    Основы теории трансформатора

    Представьте, что у вас есть трансформатор с одной обмоткой, которая соединяется с электрическим током. Переменный ток будет производить меняющийся поток, который окружает катушку. Определенная ее часть может соединяться в том случае, если переменный ток постоянно будет проходить через обмотку. Этот поток может постоянно меняться в своем направлении.

    Следуя из закона Фарадея у нас должно быть ЭДС, которое будет производить индукцию раз в секунду. Если в последней обмотке цепь будет закрыта, тогда через нее пройдет ток. Этот принцип работы трансформатора считается простейшим. Тороидальный трансформатор имеет немного другой принцип работы.

    Когда вы будете использовать движение переменного тока к электрической катушке, поток энергии будет ее окружать. Поток будет неравномерным, а его скорость может изменяться. Это понятие считается фундаментальным в работе трансформатора. Обмотка, которую он содержит, будет принимать электрическую мощность от источника. Она дает выходное напряжение благодаря взаимной индукции.

    Конструктивные части трансформатора

    На сегодняшний день устройство трансформатора включает в себя три основные части, к которым относят:

    • Первичную обмотку. Когда подключается к источнику, она будет производить магнитный поток.
    • Магнитный сердечник. Магнитный поток будет создан в замкнутую цепь.
    • Вторичная обмотка. Ее необходимо наматывать на сердечник.

    Это три основные части, из которых будет состоять силовой трансформатор.

    Принцип работы трансформатора

    Электрический силовой трансформатор является статистическим устройством. Принцип работы сварочного трансформатора заключается в том, что он будет преобразовывать энергию от схемы одного устройства к другому. Этот процесс проходит благодаря индукции между обмотками. Преобразование энергии будет происходить на основе изменения частоты. Он может работать в разных уровнях напряжения.

    Работа однофазного трансформатора

    Принцип работы однофазного трансформатора на сегодняшний день ничем не отличается от других устройств. Когда ток будет проходить по первичной обмотке, то будет создано магнитное поле. У него имеются мощные силовые линии. Первичную катушку они будут пронизывать полностью. Все линии являются замкнутыми между вокруг проводников катушек.

    Закон про магнитную связь гласит о том, чем ближе расположены объекты, тем сильнее будет их связь. Вам следует знать, что в однофазном трансформаторе сила магнитного поля будет зависеть от напряжения. Именно поэтому скачки напряжения могут снизить силу МП. При соединении концов обмотки устройство начнет снабжаться электрическим током.

    Принцип работы автотрансформатора

    Здесь мы рассмотрим принцип работы автотрансформатора. Эти устройства можно отнести к трансформаторам, которые имеют специальное использование. Обмотки в этом устройстве связаны между собою не только магнитным полем, но и гальваническим.

    При переключении обмоток можно получить как высокое, так и низкое напряжение. Переменное магнитное поле возникает в момент подключения переменного тока к сердечнику. Благодаря устройству сердечника небольшое напряжение способно создавать сильное МП. Автотрансформаторы довольно часто используют в областях, где существует незначительное изменение напряжения.

    На сегодняшний день существуют также узкоспециализированные лабораторные трансформаторы. Они имеют другой принцип работы трансформатора.

    Их обмотка должна выполняться из ферромагнитного материала. Она сводит резонансное движение к минимуму. К основным его отличиям относят:

    1. Кроме ферромагнетика используют медный провод.
    2. Он имеет низкие допустимые параметры.
    3. В нем работает система строчного ролика.

    Эти трансформаторы также могут иметь недостатки, к которым относят:

    • Все цепи нужно изолировать, так как они имеют сильную связь.
    • Его нельзя использовать для защиты в мощных цепях.
    • Ремонт стоит достаточно дорого.

    Работа гидротрансформатора

    Наверное, каждый водитель бульдозера знает принцип работы гидротрансформатора. На самом деле прибор является муфтой, которая вращается два раза. Устанавливать его необходимо между двигателем. Это необходимо чтобы получить вращательное движение. Механизм напоминает бублик, но у него достаточно сложная конструкция:

    • По краям находятся специальные насосы. Передний прибор будет передавать жидкость на турбинное колесо.
    • Переднее колесо необходимо соединить с главным валом. Благодаря этому он будет передавать жидкость по механизму.

    Как видите, принцип работы трансформатора у всех устройств практически одинаковый. Существуют некоторые особенности, но все зависит от его модели.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector