400volt.ru

Домашнему электрику
31 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Учет электроэнергии с трансформаторами тока

Трансформаторы тока для электросчетчиков – характеристики и варианты подключения

При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.

Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.

Номинальное напряжение трансформатора тока

Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:

  • 0,66 кВт;
  • 6.0 кВт;
  • 10 кВт;
  • 15 кВт;
  • 20 кВт;
  • 24 кВт;
  • 27 кВт;
  • 35 кВт;
  • 110 кВт;
  • 150 кВт;
  • 220 кВт;
  • 330 кВт;
  • 500 кВт;
  • 750 кВт;
  • 1150 кВт.

Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.

Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения. При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.

Класс точности

При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.

Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.

Принцип работы трансформатора тока

В приборах промышленного назначения используется несколько классов точности:

  • 0.1
  • 0.5
  • 1.0
  • 3.0
  • 10Р

В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.

Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2. Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов. Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.

Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.

Номинальный ток вторичной обмотки

Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.

Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.

Конструкция трансформатора тока

Номинальные значения вторичного тока «I2н» указываются в таблице прилагаемого к устройству паспорта. Номинальные токи на вторичной обмотке равны единице или 5А, но вторые показатели допускаются исключительно в устройствах с первичными токами, не превышающими 4000А.

Однако, допускается также изготовление современных токовых трансформаторных приборов по индивидуальным заказам с номинальными показателями токов вторичного типа на уровне 2.0А или 2,5А.

Существуют нормы и стандарты, по которым срок эксплуатации электросчетчика ограничен определенным периодом.

Инструкцию по монтажу однофазного счетчика смотрите здесь.

Варианты установки индукционного счетчика подробно рассмотрены в этом материале.

Номинальный ток первичной обмотки

В зависимости от конструкционных особенностей первичной обмотки, трансформаторы тока могут быть не только многовитковыми, но также одновитковыми и шинными.

На сегодняшний день наибольшее распространение получил второй вариант исполнения устройства.

Одновитковые модели токовых трансформаторов представлены разновидностями, не имеющими индивидуальную первичную обмотку или с наличием индивидуальной обмотки первичного типа.

Для одновитковых моделей без собственной первичной обмотки характерно встроенное, шинное или разъемное выполнение. Первичный токовый уровень, в этом случае, всегда определяется в соответствии со стандартизированными номинальными токами.

Токи номинальные первичного типа «I1н» указываются в паспортных табличных данных трансформаторного прибора, и определяют стандартные коэффициенты трансформации в виде соотношения номинальных токовых показателей на двух видах обмотки устройства.

Подбирать коэффициент трансформации необходимо в строгом соответствии с расчетной нагрузкой, а также с обязательным учетом возможности функционирования установленного устройства в аварийных ситуациях. Токовый номинал на первичной обмотке не может быть меньше, чем максимальные рабочие значения тока эксплуатируемой электрической установки: I2ном.тт>Imах.эу.

Схема подключения

Рассмотрим, как подключить трансформатор тока. В зависимости от конструктивных особенностей трансформатора тока для электрических счётчиков различается несколько видов таких приборов:

  • токовые трансформаторы, предназначенные для наружного монтажа в ОРУ;
  • токовые трансформаторы, предназначенные для закрытого монтажа распределительных устройств;
  • токовые трансформаторы встроенного типа;
  • токовые трансформаторы, предназначенные для монтажа на изоляторы проходного типа;
  • токовые трансформаторы в переносном или мобильном исполнении.

Токовыми трансформаторами обеспечивается полноценная изоляция эксплуатируемых силовых электрических цепей. Измерительное устройство в быту – гарантия безопасной работы, поэтому специалисты рекомендуют использовать так называемую гальваническую развязку. К недостаткам этого способа установки можно отнести достаточно большое количество электропроводов.

Подключение счетчика электрической энергии через токовые трансформаторы осуществляется посредством десятижильных кабелей. В конструкции применяются раздельные цепи, как на ток, так и напряжение. Стандартная схема установки предполагает обязательное подсоединение трех элементов электросчетчика с соблюдением правил полярности при прямом чередовании фаз относительно «U».

Схема подключения электросчетчика через трансформаторы тока

В процессе самостоятельного монтажа измерительных приборов электрической энергии, токовые трансформаторы подключаются к цепным разрывам при помощи специальных, очень удобных в применении зажимов «Л-1» и «Л-2».

Электротехнический шкаф защищает счетчик от пыли, влаги, грязи. Щиток электрический под счетчик и автоматы – критерии выбора рассмотрим далее.

Знаете ли вы, что такое коэффициент трансформации счетчика электроэнергии? Читайте эту информацию, если интересно.

Видео на тему

Как правильно считаются показания счетчика электроэнергии с трансформаторами тока

Данный коэффициент — это характеристика, показывающая достоверность показаний прибора-измерителя. Этот показатель определяет степень работоспособности станции трансформаторов тока. Коэффициент трансформации (КТ) счетчика электроэнергии — один из значимых показателей, позволяющий вести правильный учет расхода электроэнергии. Разберемся подробнее в этом вопросе.

Понятие о коэффициенте трансформации

Для произведения рационального контроля электроэнергии на крупных объектах используется специальное оборудование, снижающее мощность на выходах электросчетчика. Данные устройства не соединены напрямую с электросетью здания, что обозначает невозможность прямого включения высоковольтного напряжения к общей электросети. Отсюда следует, чтобы минимизировать возникновение неисправностей надо уменьшать мощность с помощью трансформаторного оборудования. В таком случае электросчетчики зафиксируют нагрузку, сниженную в десятки раз. Полученные таким образом результаты и будут КТ, а, чтобы определить настоящий расход электричества, следует умножить показания электросчетчика на используемый расчетный коэффициент.

Как выбрать трансформатор тока по коэффициенту трансформации? ↑

При выборе такого типа трансформаторных устройств существует ряд определенных ограничений и правил установки дополнительного оборудования. Так, например, установка трансформатора тока, который имеет завышенный Кт, не желательна. При повышенном коэффициенте допускается установка приборов учета непосредственно на приемном вводе. Если же речь о силовых приборах трансформации, то счетчики следует монтировать со стороны напряжения с самым низким значением.

Сегодня на рынке самыми популярными являются именно трансформаторы с одним КТ, так как этот показатель у устройства гарантированно не меняется на протяжении всего времени эксплуатации.

Инженерный имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытания машин постоянного тока или задать вопрос, звоните по телефону.

Формула для определения коэффициента трансформации

Из соотношения видно, как отличаются входные показания напряжения и тока от выходных. При значениях больше единицы, проводятся мероприятия по снижению напряжения, при меньших, наоборот — повышают с помощью специальных устройств. Данные коэффициенты различаются для показания напряжения и тока. Формула расчета:

  • U1 и U2 – показания напряжения на 1 и 2 обмотке;
  • N1 и N2 – число витков первичной и вторичной обмотки;
  • I2 и I1 – сила тока в первичной и вторичной обмотке.

Чаще всего данные показатели указаны в документах оборудования и приборов. Если документов нет, то все показатели можно определить по условным знакам на корпусах устройств. Возникает проблема, когда нужно произвести расчет КТ по экспериментальным данным. Для этого электричество пропускают через первичную обмотку электроприбора и замыкают на вторичной, а затем измеряют ток во вторичной обмотке.

Пример расчета потерь электроэнергии


Расчет потерь электроэнергии в кабеле
Посмотрите на картинке выше как выглядит расчет потерь электроэнергии в кабеле.

Щелкнув по ссылке, можно открыть пример расчета потерь электроэнергии, сделанный для 3-фазной линии ВВГнг-ls 2х(5х25) длиной 28 м, через которую подключена электроустановка нежилого помещения мощностью 32.93 квт. Исходные данные: 1. Коэффициент формы графика суточной нагрузки K — это отношение среднеквадратичной мощности к средней за данный период времени. Для жилого строения, которое эксплуатируется 24 часа в сутки, коэффициент формы нужно выбрать равным 1.1. 2. Число часов работы линии за расчетный период, T, час. Здесь все понятно. Если имеется в виду жилое помещение, а считаем за месяц, берем 24 часа 30 дней в месяце, т.е. 720 часов. 3. Средняя активная нагрузка в линии за расчетный период, P, кВт. В нашем примере 32,93 квт. 4. Линейное напряжение, U, кВ. При однофазном подключении 0,22 кв, при трехфазном 0,38 кв. 5. Длина линии, l, м. В нашем конкретном случае длина кабеля от границы балансовой принадлежности до счетчика 28 м. 6. Активное сопротивление проводника, ρ, Ом·мм2/м. Для меди 0,0172, для алюминия 0,027. 7. Cечение жилы, s, мм2. У нас 25, да еще с учетом того факта, что два кабеля проложены и подключены параллельно. 8. Средневзвешенное значение коэффициента реактивной мощности узла нагрузки при известных значениях потребляемых активной и реактивной мощностях определяется. При расчете берем расчетную величину из схемы или проекта. У нас 0,92.

Расчеты 1. Среднее значение тока за расчетный период, А. Вычисляем исходя из расчетной мощности, напряжения в линии, коэффициента мощности по формуле для 3 фазного случая.

Формула для расчета тока, зная напряжение, мощность для 3 фаз

2. Активное сопротивление линии за расчетный период, Ом

Формула для расчета активного сопротивления проводника, зная длину, сечение, удельное сопротивление

3. Потери электроэнергии в линии за расчетный период, кВт·ч

3 учитывает 3 фазы.

4. Отношение потери электроэнергии в линии за расчетный период к общему расходу электроэнергии, %.

Формула для расчета потерь электроэнергии в процентах

Расчет потерь электроэнергии в трансформаторе Если на балансе абонента находится трансформатор и счетчик размещен в его РУ-0,4 кВ, результат расчета должен учитывать потери мощности в трансформаторе.

Индукционные счетчики

Приборы первого типа в своем составе имеют две катушки, одна из них ограничивает переменный ток, исключая неточности и образуя магнитное поле. Вторая — образует переменный ток. К плюсам этих счетчиков можно отнести их высокую работоспособность, простая конструкция. Несмотря на перепады напряжения, такие счетчики прослужат очень долго. Индукционные устройства достаточно габаритны, но имеют доступную цену. Даже несмотря на распространенность такие счетчики энергоемкими и низкой точности.

Расчет показаний счетчика непрямого подключения

ТТ устанавливаются в сети, потребляющие сотни киловатт эл энергии. Принцип работы такого преобразователя основан на снижении величины электротока до значения, позволяющего подключить через него стандартный электросчетчик. Например, счетчик на 5 А, в сети 150 А, ТТ должен снизить показатель в 30 раз, то есть, коэффициент трансформации, используемый при подсчете расхода, тоже 30.

Как считать показания счетчика с трансформатором тока? Нужно их просто считать и отнять показатель, считанный в начале расчетного периода.

Потом полученная цифра умножается на коэффициент трансформации, указанный в технической документации или акте поставщика электроэнергии, рассчитанный самостоятельно. Это и есть ответ на вопрос, как рассчитать электроэнергию с трансформаторами тока.

Электронные приборы учета

Данные счетчики достаточно дорогостоящи, однако цена оправдывает качество. Эти устройства имеют высокий класс точности, что сводит погрешности показаний к минимуму. У данных устройств есть функция многотарифности. Принцип действия такого счетчика основан на том, что он трансформирует сигнал в цифровой код, который затем расшифровывается микроконтроллером. Затем данные выводятся на дисплей. Такие счетчики имеют возможность вести учет в нескольких направлениях, они намного компактнее и занимают меньше места. К отрицательным качествам следует отнести гиперчувствительность к скачкам напряжения, а также такие счетчики непригодны для ремонта.

Электронные или индукционные

Специалисты в области электротехники отмечают, что на сегодняшний день потребители отдают предпочтение электронным видам считывающих устройств, поскольку у них класс точности ниже, чем у индукционных устройств. Коэффициент трансформации счетчика влияет на точность конечных показаний. В среднем у индукционных образцов класс точности равен 2.5, тогда как у электронных – 2.0. Это означает, что погрешность показаний в результате работы электрического считывающего устройства электронного типа составляет до 2%, а у индукционного – 2,5%.

Читать еще:  Разновидности и маркировки проводов

Именно по этой причине на данный момент чаще устанавливается электронное оборудование, так как оно позволяет больше сэкономить, получая показании точней. Специалисты настоятельно не рекомендуют устанавливать оборудование с завышенным значением коэффициента трансформации. В современной электротехнике принято использовать трансформаторы со статичным КТ, который гарантированно не будет изменяться при эксплуатации.

К таким электрическим счетчикам можно отнести Меркурий-230. Меркурий-230 производится на территории России и считается одним из лучших образцов для коммерческого и частного использования. Меркурий-230 может изготавливаться для одно- и друхтарифного плана. Обычно модель Меркурий-230 поддерживает трехфазную электрическую сеть. В среднем для Меркуия-230 гарантийный срок составляет 25 лет, что является оптимальным выбором при учете качества и цены. Меркурий-230 полностью соответствует ГОСТ стандартам.

Меркурий-230 имеет хороший класс точности и стабильно работает при значительных изменениях температуры в окружающей среде в течение всего срока эксплуатации устройства. Меркурий-230 позволяет обеспечить точное измерение текущих параметров электрической сети – частоту, коэффициент мощности, текущее значение фазного тока, напряжение.

Тарификатор Меркурия-230 позволяет одновременно учитывать показания по 4 тарифам в 16 временных зонах суток, а также для четырех типов дня. Меркурий-230 может учитывать активную электроэнергию прямого направления и полной ее мощности по фазам, сумме значений фаз с определением направления вектора полной мощности.

Расчет коэффициента спроса на щит

Расчет коэффициента спроса на щит будем выполняют в два этапа:

  1. Определение коэффициентов спросов для разных типов потребителей;
  2. Определение коэффициента спроса на щит.

Однако, технически для этого в расчетной таблице DDECAD потребуется выполнить три шага:

  1. Определение коэффициентов спросов для разных типов потребителей;
  2. Определение коэффициента спроса на щит;
  3. Указание коэффициентов спроса на щит и на группы.

2.1. Расчет коэффициента спроса сети освещения

Расчет коэффициента спроса для расчета питающей, распределительной сети и вводов в здания для рабочего освещения выполняются в соответствии с требованиям п.6.13 СП 31‑110‑2003 по Таблице 6.5.

Коэффициент спроса для расчета групповой сети рабочего освещения, распределительных и групповых сетей аварийного освещения принимают равным единице в соответствии с п.6.14 СП 31-110-2003.

Установленная мощность светильников рабочего освещения Pуст осв. = 7,4 кВт. Принимаем, что рассматриваемый офис относится к зданиями типа 3 по Таблице 6.5 СП 31-110-2003. В таблице данная мощность отсутствует, поэтому, в соответствии с примечанием к таблице, определяем коэффициент спроса при помощи интерполяции. Пользователи DDECAD могут легко и быстро определить коэффициент спроса при помощи встроенного в программу расчета. Получаем Kс осв. = 0,976.

2.2. Расчет коэффициента спроса розеточной сети

Расчет коэффициента спроса розеточной сети выполняют в соответствии с п.6.16 СП 31-110-2003 и Таблице 6.6. Получаем Кс роз. = 0,2.

2.3. Расчет коэффициента спроса сети питания компьютеров

Коэффициент спроса для сети питания компьютеров выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. По п.9 Таблицы 6.7 для числа компьютеров более 5 получаем Кс ком. = 0,4.

2.4. Расчет коэффициента спроса сети питания множительной техники

Коэффициент спроса для сети питания множительной техники выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. По п.12 Таблицы 6.7 для числа копиров менее 3 получаем Кс множ. = 0,4.

2.5. Расчет коэффициента спроса технологического оборудования

Коэффициент спроса для сети питания кухонного оборудования выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. Примем, в общем случае, что кухонное оборудование является технологическим оборудование пищеблока общественного здания. По п.1 Таблицы 6.7 коэффициент спроса следует принять по Таблице 6.8 и п.6.21 СП 31-110-2003. Получаем Кс кух. = 0,8.

Если технологическое оборудование пищеприготовления не является оборудование пищеблока общественного здания, а находится в помещении приёма пищи небольшого офиса, то коэффициент спроса следует принимать как для розеточной сети в соответствии.

2.6. Расчет коэффициента спроса оборудования кондиционирования

Коэффициент спроса для сети питания оборудования кондиционирования выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. По п.5 Таблицы 6.7 коэффициент спроса следует принять по поз.1 Таблицы 6.9 СП 31-110-2003. Получаем Кс конд. = 0,78.

2.7. Вычисление коэффициента спроса щита

Вычисление коэффициента спроса щита будет происходить в два этапа.

2.7.1. Определение коэффициента спроса на щит

Вносим выбранные коэффициенты спроса для каждого типа нагрузки в столбик «Коэфф. спроса», столбик «D» в Excel. Получается, что мы устанавливаем коэффициенты спроса для групповой сети. Это неверно, но это промежуточный этап, в следующем шаге мы это откорректируем.

2.7.1. Указание коэффициента спроса на щит и на группы

После внесения коэффициентов на предыдущем шаге в нижней строке мы получаем рассчитанный итоговый коэффициент спроса на щит в столбике «Коэфф. спроса», столбик «D» в Excel.

Следующим шагом мы вносим это значение в ячейку столбика «Kс на щит», столбик «N» в Excel. После этого возвращаем групповые коэффициенты спроса в исходное значение, равное единице.

Как подключить трехфазный счетчик через трансформатор тока — схема

Оплата потребляемой электроэнергии осуществляется на основе показаний электрических счетчиков. Установка приборов обязательна для всех пользователей и помещений, использующих соответствующий ресурс. Существует несколько вариантов и моделей, которые различаются типам соединений и уровню предельной нагрузки. Подключение трансформаторов тока к трехфазному счетчику осуществляется разными способами – выбор схемы зависит от помещения и напряжения.

  1. Общие требования
  2. Принцип работы измерительных трансформаторов
  3. Схемы подключения
  4. Учет электроэнергии с трансформаторами тока

Общие требования

Трансформаторы тока – это оборудование, которое устанавливают, чтобы снизить (преобразовать) показатель до уровня, нормального для работы механизмов учета и контроля (счетчиков).

Другими словами данные приборы (производства компаний Меркурий, Ленэлектро и других) устанавливают на участках со значительной мощностью в том случае, когда прямое подключение невозможно из-за высоких токов. Непосредственное подсоединение без соответствующего предохранителя приводит к сгоранию магнитных катушек и выходу оборудования из строя.

Как правило, подключением трансформаторов тока занимаются мастера специальных монтажно-наладочных организаций. На крупных производствах существуют отдельные цеха и лаборатории.

В первую очередь проводится ревизия техники – внешний осмотр, проверка на работоспособность и предельную мощность. Кроме этого замеряется тангенс внутреннего изоляционного провода и сопротивления. Исходя из полученных данных, выбирается схема подключения, делается разметка, просверливается необходимое количество отверстий.

Принцип работы измерительных трансформаторов

Внутренне устройство и метод работы трансформаторов тока базируется на простых принципах, схема несложная. Первичная обмотка катушки подключается последовательно, чтобы протекал фазовый нагрузочный ток. После возникает индукция электромагнитного поля, которая переходит на обмотку вторичной катушки. В последнюю врезают трехфазные трансформаторы.

Для уменьшения используется коэффициент трансформации, благодаря которому во второстепенную обмотку поступает меньшее количество электроэнергии. Так обеспечивается нормальная работа счетчика, а показатели на выходе необходимо умножать на число коэффициента, чтобы получилось истинное значение израсходованного напряжения.

Таким образом, трансформаторный механизм преобразует высокое напряжение на входе в приемлемое для счетчика. Оборудование работает при частоте в 50Гц и токе 5А. например, если устройство имеет предельный показатель нагрузки в 100А, данные на выходе умножаются на 20 (100 разделить на 5).

Благодаря переходникам обеспечивается защита счетчиков от перепадов напряжения, коротких замыканий, перегрузок. Более того, если сгорит трансформатор, его легче заменить, чем электротехнический счетчик.

При подключении стоит учитывать и некоторые недостатки. Наиболее распространенный вариант – не учитывается стартовое значение тока прибора учета. В таком случае счетчик просто не сможет начать работу.

Несоблюдение полярности при подключении – еще одна часто допускаемая ошибка. На входе катушки первичной обмотки находится две клеммы – одна для фазы L1, другая для нагрузки L2. Измерительная обмотка для катушки также оснащена двумя клеммами (И1 и И2). Кабель требуется подключать на соответствующие контакты, предварительно рассчитав предельную нагрузку.

Если некорректно соединить микроконтакты и провода, возникнет короткое замыкание. Подобное может привести к выходу устройств из строя, возгораниям.

Схемы подключения

Электротехнические счетчики и трансформаторы соединяются с учетом требований безопасности и правил работы, а также особенностями самого прибора. Минимальная температура установки — +5˚ по Цельсию. В противном случае не получится корректного технического соединения – приборы, работающие с напряжением и токами, плохо переносят низкие температуры.

Если требуется подключить трансформатор на улице в холодное время года, необходимо сооружать специальный шкаф – утепленный и герметичный. Сам прибор обычно устанавливают на высоте 1-1,7 метра.

Установка счетчика с трансформаторами тока

Не всегда есть возможность измерять потраченную электроэнергию через счетчик, подсоединенный к сети питания напрямую (в розетку). В цепях с напряжением в 380 Вольт и пределами токов больше 100А – соответственно и потребление вырастает до 60 кВт – требуется монтаж измерительного трансформатора тока. Подобное соединение мастера называют косвенным, но такой способ дает наиболее точные данные. Кроме этого есть и еще два метода:

  • полукосвенное;
  • звезда.

Первое используется на промышленных предприятиях и крупных заводах с расходом мощности выше 0,4 кВт и током силой более 100А.

Схема «звезда» в свою очередь может быть полной и неполной. Для полной звезды подойдут устройства с равномерным распределением нагрузки и симметричным токовым потоком. Трансформатор устанавливается на все фазы, а релейная обмотка соединяется по форме звезды.

Неполная – двухфазная двухрелейная схема с образованием части звезды. Данная схема быстро реагирует на короткие замыкания (кроме заземления), а также есть возможность установки на межфазных щитках.

Установка многовиткового измерителя

Трехфазный счетчик трансформаторного включения используют в многопроводных сетях. При многовитковых соединениях первичную обмотку катушки заменяют на кабельную. Прибор контролирует движение тока по вторичной обмотке. В остальном – трансформатор работает по тому же принципу, что и оборудование другого типа.

Десятипроводная схема

Данный способ подключения подходит для использования в мощных силовых цепях, работа которых обеспечивается трансформаторами. Развязка гальванического типа подходит для промышленных и бытовых нужд и гарантирует безопасность эксплуатации оборудования. Последовательность соединения по клеммам (от первой к последней):

  • фаза, вход (А);
  • измеряющий контур фазного механизма, вход;
  • измерительный привод, выход (А);
  • клемма, фаза, вход;
  • измеряющий контур фазного механизма, выход (В);
  • фаза, выход (В);
  • фаза, вход (С);
  • контур, измерение фазы – вход.

Десятипроводная схема не требует отключения электропитания при замене счетчика и выполнении других работ. Токовые цепи надежно заземляются, что исключает возможность накопления нежелательного потенциала. Каждая фаза собирается независимо друг от друга – в случае поломки на одной другие продолжат работу.

Семипроводная схема

Подобная схема подключения имеет ряд преимуществ и некоторые недостатки. Незначительно отличается от десятипроводной. Работать со счетчиком удобно – нет необходимости отключать систему полностью при проведении работ со щитком, приборами учета и трансформаторами.

Благодаря заземленным токовым цепям на выходах вторичных обмоток не накапливается опасный потенциал, который часто приводит к коротким замыканиям и сгоранию оборудования. К общей сети подключается испытательная коробка, которая позволяет безопасно отсоединять цепи питания.

Семипроводной способ – один из устаревших, используется редко. Электромонтажеры профессиональных компаний не рекомендуют подключаться более современными способами.

Схема с совмещенными цепями

Подобная схема существенно отличается от предыдущих. Трансформаторы тока с совмещенными цепями подсоединяются через специальные перемычки (путь получается от L1 к L2).

Такая схема подключения трансформатора к счетчику не соответствует обновленным правилам безопасности, действующим сегодня. Поэтому использовать совмещенные цепи запрещено – как на производстве, так и в бытовых условиях.

Другие системы подсоединения

Кроме указанных, существуют и иные схемы подключения счетчика к трансформатору. Использование испытательной колодки в соединении – согласно п. 1.5.23 Правил устройства электроустановок – необходимо при активации образцового прибора учета. Это дополнительное оборудование, которое позволяет шунтировать и отключать токовые цепи, активировать счетчики без снижения нагрузки напряжения. Еще один момент – возможность пофазного снятия показаний.

Основа соединения через испытательную коробку – десятипроводная схема. Отличие состоит в установке между прибором учета и трансформаторной конструкцией переходного блока с необходимыми защитными и распределительными функциями.

Учет электроэнергии с трансформаторами тока

Корректный учет потребляемой энергии обязателен. Намеренные или случайные ошибки приведут к проверкам, штрафным санкциям, увольнениям, в особо серьезных случаях, когда финансовые обязательства после перерасчета оказываются непосильными – к закрытию и банкротству предприятий.

Электросчетчик является основным прибором, который показывает расход энергии на текущий момент. Современные модели выдают показания с большей точностью, есть возможность настроить несколько режимов работы (например, разный учет в дневное и ночное время – отличаются тарифы). Мастера рекомендуют устанавливать электронное оборудование, а не индукционное. Первые намного дороже, но отражают более точные данные.

Читать еще:  Какого цвета и как обозначаются провода ноля, фазы и земли в электрике

Первое, на что обращают внимание – количество фаз в сети. Счетчики и трансформаторы должны иметь одинаковое число фаз с электросетью.

Трехфазные устройства допускаются на однофазные сети (не наоборот), однако стоят в несколько раз дороже. Подобный вариант используют, если такой трансформатор есть в наличии.

Важный момент – класс точности трансформаторов. На большей части объектов используется маркировка 2,0, этого для среднего производства и бытовых нужд достаточно. Для крупномасштабных заводов, подстанций, зданий необходим более высокий класс – 1,0. Оптимальный вариант, если обозначение дополнено буквой S, которая означает максимальную точность прибора.

Электроэнергия – это товар, за пользование которым необходимо вносить определенную плату. Для разных ситуаций – промышленность, квартиры, соц объекты, другое – предусмотрены отдельные тарифы. Чтобы корректно оплачивать потребленную энергию, необходим правильный и точный учет.

Если счетчик работает исправно, опломбирован соответствующими службами, его показания передают в организацию, с которой заключен договор на поставку электроэнергии. Далее в соответствии с электромерой, рассчитывается оплата.

Для крупных объектов, использующих большое напряжение, установка трансформаторов необходима. В противном случае будет невозможно использовать электросчетчики и снимать показания, вести учет потребляемого тока.

Определение и расчет коэффициента трансформации счетчика электроэнергии

Last Updated on 04.10.2017 by Vitaliy Draka

Все приборы учета электроэнергии, которые рассчитаны на большие токи (от 100 А и выше) имеют в своем составе понижающие трансформаторы. Они уменьшают ток, поступающий непосредственно на измерительную часть. Одним из основных параметров для потребителя в этом случае является коэффициент трансформации счетчика электроэнергии. Он необходим для правильного снятия показаний с таких измерительных приборов.

Техническая характеристика коэффициента

Коэффициент трансформации – отношение токов нагрузки и электрического счетчика. В данном случае он всегда будет больше единицы, так как токи потребления превышают измерительные. При подсчете израсходованной электроэнергии, показания на циферблате или панели, умножаются на данный коэффициент. Получившееся значение является правильным количеством потребленных киловатт-часов.

А также трансформаторы имеют класс точности. Для оборудования учета электроэнергии он равен 0,2 или 0,5. Чем ниже значение класса, тем более высокая точность измерительных приборов.

Виды электросчетчиков

Существует огромное количество различных электросчетчиков. Однако их всех можно разбить на три основных вида:

  • индукционные или механические;
  • электронные;
  • гибридные.

Механические устройства

Конструктивно индукционные счетчики выполнены следующим образом – между двух катушек, токовой и напряжения, находится алюминиевый диск, который механически связан со шкалой.

Принцип работы – ток, протекающий по катушкам, создает электромагнитное поле, которое заставляет вращаться диск. Он через червячную передачу передает свое вращение на механизм отсчета. Чем больший ток протекает через катушки, тем большая индуктивность электромагнитного поля, которое заставляет быстрее вращаться диск, а следственно и шкалу.

В классификации счетчиков индуктивные являются самыми неточными. Это обусловлено погрешностями, возникающими при преобразовании электромагнитного поля во вращение диска. А также довольно серьезные погрешности могут возникать и в механизме вращения шкалы.

Главным достоинством данного вида – низкая цена.

С электронным механизмом

Электронные приборы учета электроэнергии появились относительно недавно. Основаны они на измерении тока посредством аналоговых датчиков. Информация с датчиков поступает на микроконтроллер, где преобразуется и выводится на ЖК дисплей.

К достоинствам электронных относится:

  • Небольшие размеры.
  • Возможность настраивать несколько алгоритмов подсчета электроэнергии.
  • Самый высокий класс точности среди других видов из-за отсутствия большого числа элементов при измерении.
  • Возможность настроить систему АСКУЭ.

Главными недостатками являются высокая цена и большая чувствительность к скачкообразному изменению напряжения в сети.

Смешанные модели

Гибридные приборы, как видно из названия, являются комбинацией компонентов индуктивных и электронных счетчиков. Измерительная часть у них взята от механических, а обработка и вывод показаний осуществляется с помощью микроконтроллера.

Данный вид был создан с целью уменьшения цены на оборудование, которое можно было бы подключить в систему АСКУЭ. Данный вид нечувствителен к скачкам напряжения.

К недостаткам можно отнести большие размеры и невысокую точность по сравнению с электронными.

Определение коэффициента трансформации

Как было сказано выше, при подсчете затраченной электроэнергии важно знать коэффициент трансформации счетчика. Информацию о нем можно найти как в паспорте на счетчик электроэнергии, так и на лицевой панели прибора. Иногда в электронных приборах его можно найти в меню. Обозначается он либо через знак деления, либо просто числом. Обычно это значения из ряда 10, 20, 30 и 40.

Но нередки случаи, когда паспорт на оборудование отсутствует. В этом случае коэффициент трансформации можно высчитать самому. Для этого необходимо иметь либо два мультиметра, либо специальное оборудование.

В первом случае, одним мультиметром измеряется напряжение на первичной обмотке, вторым на вторичной. Важно помнить, что замеры делаются только на холостом варианте работы трансформатора, то есть без нагрузки. Ни в коем случае не следует превышать значение номинального напряжения, указанного в паспорте, так как это значительно увеличит погрешность.

Использование специального оборудования позволяет не использовать внешний источник питания, что существенно упрощается процедуру измерения.

Измеряя показатель трансформации, следует использовать измерительные приборы с классом точности не менее 0,5.

Видео по теме: Как посчитать потребление электроэнергии на счетчике с трансформаторами тока

Коммерческий учет электрической энергии

Технические требования к установке измерительных комплексов

коммерческого учета электроэнергии

Требования к расчетным счетчикам электрической энергии

Приборы учета — совокупность устройств, обеспечивающих измерение и учет электроэнергии (измерительные трансформаторы тока и напряжения, счетчики электрической энергии, телеметрические датчики, информационно — измерительные системы и их линии связи) и соединенных между собой по установленной схеме.

Счетчик электрической энергии — электроизмерительный прибор, предназначенный для учета потребленной электроэнергии, переменного или постоянного тока. Единицей измерения является кВт*ч или А*ч.

Расчетный счетчик электрической энергии — счетчик электрической энергии, предназначенный для коммерческих расчетов между субъектами рынка.

Для учета электрической энергии используются счетчики электроэнергии, типы которых утверждены федеральным органом исполнительной власти по техническому регулированию и метрологии и внесены в государственный реестр средств измерений.

Технические параметры и метрологические характеристики счётчиков электрической энергии должны соответствовать требованиям:

ГОСТ 52320-2005 Часть 11 «Счетчики электрической энергии»;
ГОСТ Р 52323-2005 Часть 22 «Статические счетчики активной энергии классов точности 0,2S и 0,5S»; ГОСТ Р 52322-2005 Часть 21 «Статические счетчики активной энергии классов точности 1 и 2»;

ГОСТ Р 52425−2005 «Статические счетчики реактивной энергии».

Счетчики для расчета энергоснабжающей организации с потребителями электроэнергии рекомендуется устанавливать на границе раздела сети (по балансовой принадлежности) сетевой организации и потребителя.

В случае, если расчетный прибор учета расположен не на границе балансовой принадлежности электрических сетей, объем принятой в электрические сети (отпущенной из электрических сетей) электрической энергии корректируется с учетом величины нормативных потерь электрической энергии, возникающих на участке сети от границы балансовой принадлежности электрических сетей до места установки прибора учета, если соглашением сторон не установлен иной порядок корректировки.

Счётчики должны размещаться в легкодоступных для обслуживания сухих помещениях, в достаточно свободном и не стесненном для работы месте. Счетчики общепромышленного исполнения не разрешается устанавливать в помещениях, где по производственным условиям температура может часто превышать +40°С, а также в помещениях с агрессивными средами. Допускается размещение счетчиков в не отапливаемых помещениях и коридорах распределительных устройств электростанций и подстанций, а также в шкафах наружной установки. В случае, если приборы не предназначены для использования в условиях отрицательных температур, должно быть предусмотрено стационарное их утепление на зимнее время посредством утепляющих шкафов, колпаков с подогревом воздуха внутри них электрической лампой или нагревательным элементом для обеспечения внутри колпака положительной температуры, но не выше +20°С.

Счётчики должны устанавливаться в шкафах, камерах комплектных распределительных устройствах (КРУ, КРУН), на панелях, щитах, в нишах, на стенах, имеющих жесткую конструкцию. Высота от пола до коробки зажимов счетчиков должна быть в пределах 0,8-1,7 м. Допускается высота менее 0,8 м, но не менее 0,4 м.

В местах, где имеется опасность механических повреждений счетчиков или их загрязнения, или в местах, доступных для посторонних лиц (проходы, лестничные клетки и т.п.), для счетчиков должен предусматриваться запирающийся шкаф с окошком на уровне циферблата. Аналогичные шкафы должны устанавливаться также для совместного размещения счетчиков и трансформаторов тока при выполнении учета на стороне низшего напряжения (на вводе у потребителей).

Конструкции и размеры шкафов, ниш, щитков и т. п. должны обеспечивать удобный доступ к зажимам счетчиков и трансформаторов тока. Кроме того, должна быть обеспечена возможность удобной замены счетчика. Конструкция его крепления должна обеспечивать возможность установки и съёма счетчика с лицевой стороны.

При наличии на объекте нескольких присоединений с отдельным учетом электроэнергии на панелях счетчиков должны быть надписи наименований присоединений.

На присоединениях 0,4 кВ при нагрузке до 100 А включительно применять счетчики электроэнергии прямого включения.

При трёхфазном вводе использовать трёхэлементные счетчики электроэнергии.

На вновь устанавливаемых трёхфазных счётчиках должны быть пломбы государственной поверки с давностью не более 12 мес., а на однофазных счётчиках – с давностью не более 2 лет. Наличие действующей поверки счетчика электроэнергии подтверждается предоставлением подтверждающего документа – паспорта-формуляра на счетчик электроэнергии или свидетельства о поверке. В документах на счетчик электроэнергии должны быть отметки о настройках тарифного расписания и местного времени.

Основным техническим параметром счетчика электроэнергии является «класс точности», который указывает на уровень погрешности измерений счетчика. В соответствии с разделом «Правил организации учета электрической энергии на розничных рынках» «Основных положений функционирования розничных рынков электрической энергии», утвержденных постановлением Правительства РФ от 04.05.2012 № 442, требования к расчетным счетчикам электроэнергии, в зависимости от категории потребителей, должны быть следующими:

Категория потребителей

Класс точности

Дополнительные требования

Для учета электрической энергии, потребляемой потребителями с максимальной мощностью не менее 670 кВт

Приборы учета должны позволять измерять почасовые объемы потребления электрической энергии и обеспечивать хранение данных о почасовых объемах потребления электрической энергии за последние 90 дней и более или включены в систему учета

Для учета электрической энергии на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем многоквартирного дома, присоединение которых к объектам электросетевого хозяйства осуществляется после вступления в силу «Основных положений функционирования розничных рынков электрической энергии», утвержденных Постановлением Правительства РФ от 04.05.2012 № 442

Для учета электрической энергии, потребляемой потребителями с максимальной мощностью менее 670 кВт и напряжением в точках присоединения к объектам электросетевого хозяйства 35 кВ и ниже (10 кВ, 6 кВ, 380 В, 220 В)

Для учета электрической энергии, потребляемой гражданами

Для учета электрической энергии на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем многоквартирного дома

Требования к измерительным трансформаторам

Измерительные трансформаторы тока по техническим требованиям должны соответствовать ГОСТ 7746-2001 («Трансформаторы тока. Общие технические условия»).

Измерительные трансформаторы напряжения по техническим характеристикам должны соответствовать ГОСТ 1983-2001 («Трансформаторы напряжения. Общие технические условия»).

Класс точности трансформаторов тока и напряжение для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Присоединение токовых обмоток счетчиков к вторичным обмоткам трансформаторов тока следует проводить, отдельно от цепей защиты.

Использование промежуточных трансформаторов тока для включения расчетных счетчиков запрещается.

При полукосвенном подключении счётчика необходимо устанавливать трансформаторы тока во всех фазах.

Трансформаторы тока, используемые для присоединения счётчиков на напряжении до 0,4 кВ, должны устанавливаться после коммутационных аппаратов по направлению потока мощности.

Выводы вторичных измерительных обмоток трансформаторов тока должны быть изолированы от без контрольного закорачивания клемм или разрыва цепи, при помощи крышек и экранов под опломбировку.

Для обеспечения безопасности работ, проводимых в цепях измерительных приборов, устройств релейной защиты и электроавтоматики, вторичные цепи (обмотки) измерительных трансформаторов тока должны иметь постоянные заземления.

Заземление во вторичных цепях трансформаторов тока следует предусматривать на зажимах трансформаторов тока.

Трансформатор тока должен иметь действующую поверку первичную (заводскую) или периодическую (в соответствии с межповерочным интервалом, указанным в описании типа данного средства измерения). Наличие действующей поверки подтверждается предоставлением оригиналов паспортов или свидетельств о поверке трансформаторов тока с протоколами поверки.

При трёхфазном вводе применять трёхфазные трансформаторы напряжения или группы из однофазных трансформаторов напряжения.

Для сохранности измерительных цепей должна быть предусмотрена возможность опломбировки решеток и дверец камер, где установлены предохранители на стороне высокого и низкого напряжения трансформаторов напряжения, а также рукояток приводов разъединителей трансформаторов напряжения. При невозможности опломбировки камер, пломбируются выводы трансформаторов напряжения.

Для обеспечения безопасности работ, проводимых в цепях измерительных приборов, устройств релейной защиты и электроавтоматики, вторичные цепи (обмотки) измерительных трансформаторов напряжения должны иметь постоянные заземления.

Читать еще:  Обозначение переменного тока

Вторичные обмотки трансформатора напряжения должны быть заземлены соединением нейтральной точки или одного из концов обмотки с заземляющим устройством. Заземление вторичных обмоток трансформатора напряжения должно быть выполнено, как правило, на ближайшей от трансформатора напряжения сборке зажимов или на зажимах трансформатора напряжения.

Трансформатор напряжения должен иметь действующую поверку первичную (заводскую) или периодическую (в соответствии с межповерочным интервалом, указанным в описании типа данного средства измерения). Наличие действующей поверки подтверждается предоставлением оригиналов паспортов или свидетельств о поверке трансформатора напряжения с протоколами поверки.

Требования к измерительным цепям

В электропроводке к расчетным счетчикам наличие паек не допускается.

Монтаж цепей постоянного и переменного тока в пределах щитовых устройств (панели, пульты, шкафы, ящики и т. п.), а также внутренние схемы соединений приводов выключателей, разъединителей и других устройств по условиям механической прочности должны быть выполнены проводами или кабелями с медными жилами. Применение проводов и кабелей с алюминиевыми жилами для внутреннего монтажа щитовых устройств не допускается.

Для сохранности измерительных цепей должна быть предусмотрена возможность опломбировки промежуточных клеммников, испытательных блоков, коробок и других приборов, включаемых в измерительные цепи счетчиков электроэнергии, при этом необходимо минимизировать применение таких устройств.

При полукосвенном включении счётчика проводники цепей напряжения подсоединять к шинам посредством отдельного технологического болтового присоединения, в непосредственной близости от трансформатора тока данного измерительного комплекса. Места присоединения цепей напряжения счётчика к токоведущим частям сети должны быть изолированы от без контрольного отсоединения.

Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений.

Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения.

Для косвенной схемы подключения прибора учета вторичные цепи следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. Зажимы должны обеспечивать закорачивание вторичных цепей трансформаторов тока, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей. Конструкция сборок и коробок зажимов расчетных счетчиков должна обеспечивать возможность их пломбирования.

При полукосвенном включении счетчика, в качестве проводника вторичных цепей к трансформаторам тока следует применять кабель ВВГ 3 х 2,5 мм 2 с изоляцией жил разного цвета.

Требования к вводным устройствам и к коммутационным аппаратам на вводе

Должна обеспечиваться возможность полного визуального осмотра со стационарных площадок вводных устройств, ВЛ, КЛ, а также вводных до учётных электропроводок оборудования для выявления до учётного подключения электроприёмников. Места возможного до учётного подключения должны быть изолированы путём пломбировки камер, ячеек, шкафов и др.

При нагрузке до 100 А включительно, исключать установку рубильников до места установки узла учета.

Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключения счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику.

Установку аппаратуры автоматического ввода резерва, охранно-пожарной сигнализации и другой автоматики предусматривать после места установки узла учета.

Схемы подключения электрических счетчиков

Представленные ниже схемы подключения счетчиков электроэнергии являются типовыми и могут отличаться в зависимости от завода-изготовителя и места установки. При установке счетчиков электроэнергии необходимо руководствоваться паспортом завода-изготовителя на данное изделие.

Схема подключения однофазного счетчика электроэнергии

Схема подключения трехфазного счетчика электроэнергии (прямое подключение)

Учет электроэнергии. Основы

Что такое учет электроэнергии и зачем он нужен? Электроэнергия – это товар, а значит за него приходится платить, то есть без строгого учета здесь не обойтись. Основной прибор для учета электроэнергии – электросчетчик, раньше как правило, индукционного типа, сейчас все чаще электронный. Так как электроэнергия – это ток умноженный на напряжение и на время, то любой счетчик должен выполнять эти арифметические действия.

Статьи цикла «Учет электроэнергии»:

В индукционном счетчике (самый распространенный – его легко опознать по вращающемуся диску) магнитное поле токовой обмотки взаимодействует с магнитным полем обмотки напряжения, а результат накапливается на механическом устройстве.

В электронном счетчике есть датчик тока и датчик напряжения, результат обрабатывается микропроцессором и записывается в память счетчика. Наличие микропроцессора и памяти в электронном счетчике позволяет на его базе осуществить дополнительные функции, такие как архив показаний, учет потерь электроэнергии, измерение показателей качества электроэнергии, выдача данных на компьютер и др.

В быту используются однофазные электросчетчики, в промышленности – трехфазные, принципиальной разницы в них нет, просто у трехфазных счетчиков три датчика тока и три датчика напряжения. Для учета небольших (до 75-100 ампер) токов и напряжений (до 380 В) используются электросчетчики прямого включения. То есть токовые клеммы электросчетчика включаются непосредственно в измеряемую линию. Хотя клеммы электросчетчика и не рассчитаны на провода большого сечения, некоторые умудряются подточить толстый провод и все же впихнуть его. Это категорически запрещено! Если пропустить через счетчик ток больше номинального он попросту сгорит и может вызвать пожар.

Для учета больших токов токовые клеммы счетчика включаются через трансформаторы тока. Это устройство, которое пропорционально снижает ток в измерительной обмотке (куда подключается счетчик) в зависимости от тока в линии (измеряемый ток). Трансформатор тока характеризуется коэффициентом трансформации, который записывается, например так: 50/5. Цифра «50» в обозначении это номинальный ток в первичной обмотке, то есть в измеряемой линии, а цифра «5» — номинальный ток во вторичной (измерительной) обмотке, куда и подключается счетчик. Это значит, что когда ток в линии 50 А, ток на счетчике будет 5 А. И, следовательно, при токе в линии 10 А ток в счетчике будет 1 А.

Выпускаются разные трансформаторы тока на разные токи, например 50/5; 75/5; 100/5; 200/5 и т. д. Легко заметить, что вторичная обмотка унифицирована на ток 5 А, это позволяет использовать одинаковые счетчики для измерения разных токов, меняя лишь трансформаторы тока.

Для измерения в высоковольтных электроустановках используются трансформаторы напряжения, их вторичная обмотка рассчитана, как правило на 100 В. Первичная обмотка трансформаторов напряжения выполняется на 6 кВ, 10 кВ, 35 кВ, 110 кВ и др. В этом случае используются специальные электросчетчики, рассчитанные на 100 вольт. Для учета электроэнергии с большим током и большого напряжения одновременно используют и трансформаторы тока, и трансформаторы напряжения.

Каждый электросчетчик имеет свой класс точности, он указан на корпусе прибора. В метрологии определение класса точности довольно пространно и сложно, но если объяснять грубо, то счетчик с классом точности 2,5 при полной нагрузке дает погрешность не более 2,5%, а с классом точности 0,5 – не более 0,5%. То есть чем меньше цифра, тем точнее (и дороже!) прибор. Свои классы точности есть и у трансформаторов тока и трансформаторов напряжения. Выбор электросчетчика – задача не очень хитрая, но к ней требуется подходить со всей серьёзностью вопроса.

Статьи цикла «Учет электроэнергии»:

    1. Основы.
    2. Выбор счетчика.

    Прочая и полезная информация

    Учет электроэнергии с трансформаторами тока

    Оптимальные
    Инженерные решения
    в Электроэнергетике

    Будьте в курсе новостей

    Основные темы

    • Технологическое присоединение

    Класс точности для счетчиков электрической энергии и измерительных трансформаторов тока и трансформаторов напряжения по ПП РФ от 04.05.2012 N 442

    Класс точности для счетчиков электрической энергии и измерительных трансформаторов тока и трансформаторов напряжения по ПП РФ от 04.05.2012 N 442

    Класс точности для счетчиков и измерительных трансформаторов

    Постановление Правительства РФ от 04.05.2012 N 442 (ред. от 02.03.2019) «О функционировании розничных рынков электрической энергии, полном и (или) частичном ограничении режима потребления электрической энергии» (вместе с «Основными положениями функционирования розничных рынков электрической энергии», «Правилами полного и (или) частичного ограничения режима потребления электрической энергии») (с изм. и доп., вступ. в силу с 19.03.2019)

    X. Правила организации учета электрической энергии

    на розничных рынках

    137. Приборы учета, показания которых в соответствии с настоящим документом используются при определении объемов потребления (производства) электрической энергии (мощности) на розничных рынках, оказанных услуг по передаче электрической энергии, фактических потерь электрической энергии в объектах электросетевого хозяйства, за которые осуществляются расчеты на розничном рынке, должны соответствовать требованиям законодательства Российской Федерации об обеспечении единства измерений, а также установленным в настоящем разделе требованиям, в том числе по их классу точности, быть допущенными в эксплуатацию в установленном настоящим разделом порядке, иметь неповрежденные контрольные пломбы и (или) знаки визуального контроля (далее — расчетные приборы учета).

    138. Для учета электрической энергии, потребляемой гражданами, а также на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем многоквартирного дома подлежат использованию приборы учета класса точности 2,0 и выше.

    В многоквартирных домах, присоединение которых к объектам электросетевого хозяйства осуществляется после вступления в силу настоящего документа, на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем подлежат установке коллективные (общедомовые) приборы учета класса точности 1,0 и выше.

    139. Для учета электрической энергии, потребляемой потребителями, не указанными в пункте 138 настоящего документа, с максимальной мощностью менее 670 кВт, подлежат использованию приборы учета класса точности 1,0 и выше — для точек присоединения к объектам электросетевого хозяйства напряжением 35 кВ и ниже и класса точности 0,5S и выше — для точек присоединения к объектам электросетевого хозяйства напряжением 110 кВ и выше.

    Для учета электрической энергии, потребляемой потребителями с максимальной мощностью не менее 670 кВт, подлежат использованию приборы учета, позволяющие измерять почасовые объемы потребления электрической энергии, класса точности 0,5S и выше, обеспечивающие хранение данных о почасовых объемах потребления электрической энергии за последние 90 дней и более или включенные в систему учета.

    Для учета реактивной мощности, потребляемой (производимой) потребителями с максимальной мощностью не менее 670 кВт, в случае если в договоре оказания услуг по передаче электрической энергии, заключенном в отношении энергопринимающих устройств таких потребителей в соответствии с Правилами недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг, имеется условие о соблюдении соотношения потребления активной и реактивной мощности, подлежат использованию приборы учета, позволяющие учитывать реактивную мощность или совмещающие учет активной и реактивной мощности и измеряющие почасовые объемы потребления (производства) реактивной мощности. При этом указанные приборы учета должны иметь класс точности не ниже 2,0, но не более чем на одну ступень ниже класса точности используемых приборов учета, позволяющих определять активную мощность.

    Класс точности измерительных трансформаторов, используемых в измерительных комплексах для установки (подключения) приборов учета, должен быть не ниже 0,5. Допускается использование измерительных трансформаторов напряжения класса точности 1,0 для установки (подключения) приборов учета класса точности 2,0.

    140. Для учета электрической энергии в точках присоединения объектов электросетевого хозяйства одной сетевой организации к объектам электросетевого хозяйства другой сетевой организации подлежат использованию приборы учета, соответствующие требованиям, предусмотренным пунктом 139 настоящего документа.

    Частые примеры:

    Физические лица (квартира, частный дом) устанавливают счетчики электроэнергии классом точности прибора учета 2,0 и выше. Трансформаторы тока не ставятся при установки однофазных приборов учета.

    В каждом жилом доме должен быть установлен вводной общедомовой электросчетчик. Обычно он устанавливается в ВРУ-0,4 (кВ). Он должен иметь класс точности 1,0 или выше. Класс точности трансформаторов тока должен быть 0,5 или выше.

    Потребители электроэнергии мощностью до 670 (кВт) напряжением до 35 (кВ) включительно должны иметь приборы учета с классом точности 1,0 и выше. Пример: Вы являетесь индивидуальным предпринимателем и у Вас есть магазин. Ваш магазин получает питание от местной трансформаторной подстанции (ТП). В таком случае, вводной счетчик должен иметь класс точности 1,0 и выше. Трансформатор тока – класс точности 0,5 и выше.

    Потребители электроэнергии мощностью до 670 (кВт) напряжением 110 (кВ) и выше должны иметь электросчетчики с классом точности 0,5S и выше. Случай редкий, потому что при напряжении 110 (кВ) мощности электроприемников гораздо больше, чем 670 (кВт).

    Потребители электроэнергии мощностью выше 670 (кВт) независимо от класса напряжения должны иметь расчетные электросчетчики с классом точности 0,5S и выше, но с возможностью замеров часовых объемов потребления и хранения их более 90 суток, или же подключенные в автоматизированную систему учета АСКУЭ (АСТУЭ).

    Трансформаторы тока должны иметь класс точности 0,5S и выше.

    Трансформаторы напряжения должны иметь класс точности 0,5 и выше.

    Трансформаторы напряжения используются при организации учета в сети свыше 1000 Вольт.

    Таблица классов точности измерительных приборов

    0 0 голоса
    Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты