400volt.ru

Домашнему электрику
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы электронного счетчика электроэнергии

Устройство и принцип работы электросчетчика

Учет расхода потребляемой электрической энергии на объектах любой формы собственности осуществляется с помощью электросчетчиков. Правильный выбор прибора отражается на экономии электроэнергии, что является первостепенной задачей в настоящее время. Ни один объект не будет включен к сетям энергопоставляющих компаний без установки электросчетчика. Правила его выбора, места установки и подключения регламентируются нормативно-технической документацией, среди которых ПУЭ занимает основное место. Каждый домовладелец оформляет договор на подключение к сетям, где модель счетчика должна быть обязательно указана. Это необходимо для того, чтобы осуществлять поверку счетчика, периодичность которой для каждой модели устанавливается предприятием-изготовителем.

Счетчик для учета электроэнергии

Классификация

Отечественные и зарубежные производители выпускают огромный ассортимент электросчетчиков. Разобраться поможет классификация устройств по следующим признакам:

  • принципу работы (индукционные и электронные);
  • количеству фаз или классу напряжения (одно,- и трехфазные);
  • способу подключения (напрямую и через измерительные трансформаторы);
  • количеству тарифов (одно-, двух,- и трехтарифные);
  • типу тарификатора (внешний и внутренний);
  • классу точности (0,2s; 0,2; 0,5s; 0,5; 1,0; 2,0; 2,5);
  • измеряемому току (базовый, стартовый и максимальный);
  • типу интерфейсов (импульсный, ИК порт, RS 232, RS 485, волоконно-оптическую линию связи, CAN, PLC-модем и GSM).

Устройство и принцип работы

Конструкция счетчика зависит от принципа его работы и осуществляемых функций. Индукционный однофазный счетчик используется в однофазных переменных сетях и состоит из следующих частей:

  • корпуса составного;
  • двух обмоток: токовой и напряжения;
  • двух магнитопроводов: обмотки тока и обмотки напряжения;
  • противополюса;
  • диска алюминиевого;
  • механизма червячного типа;
  • механизма счетного;
  • магнита постоянного, служащего для торможения диска;
  • оси, на которой закреплены счетный механизм, червячная передача и алюминиевый диск.

Схематическое устройство однофазного электросчетчика индукционного типа

Принцип работы устройства заключается в следующем. 2 электромагнита представляют измерительный механизм счетчика. Они расположены под углом 90° друг к другу. В магнитном поле этих электромагнитов находится диск, выполненный из алюминия. Счетчик включается в работу путем подсоединения с электроприемниками токовой обмотки последовательно, а с электроприемниками напряжения – параллельно. При прохождении переменного тока по обмоткам в сердечниках возникают магнитные потоки переменной величины. Они пронизывают диск, в результате чего индуцируют вихревые токи. При взаимодействии последних с магнитными потоками создается усилие, которое вращает диск. Он, в свою очередь, связан со счетным механизмом, который учитывает частоту вращения диска. Цифры, расположенные на счетном механизме фиксируют расход электрической энергии.

При увеличении тока нагрузки возникает больший вращающий момент, что заставляет диск вращаться быстрее.

Принцип работы трехфазных индукционных счетчиков аналогичен выше описанному счетчику, с той лишь разницей, что их используют в трехфазных сетях переменного тока.

Вид спереди трехфазного индукционного электросчетчика со снятой крышкой

Вид сбоку со снятой задней частью корпуса трехфазного индукционного счетчика

С развитием электронных технологий появились счетчики учета расхода электроэнергии электронного типа. Принцип действия их довольно прост. Специальный преобразователь входные аналоговые сигналы с датчиков тока и напряжения преобразует в цифровой импульсный код. Он подается на микроконтроллер, который фиксирует количество потребляемой электроэнергии на дисплее изделия. Отсюда основными частями электронного счетчика являются:

  • кожух защитный;
  • трансформаторы измерительные тока и напряжения;
  • преобразователь;
  • микроконтроллера, являющиеся органом управления и передачи информации на дисплей;
  • колодка клеммная для подсоединения эл. проводов.

Работа однофазных и трехфазных электронных счетчиков осуществляется по одним и тем же законам, с той лишь разницей, что в 3-хфазном осуществляется суммирование величин каждого из трех каналов.

Структурная схема работы однофазного счетчика электронного типа

Из схемы видно, что трансформатор тока включен в разрыв фазного провода, а трансформатор напряжения подключен к нулю и фазе. Сигналы величины тока и напряжения с помощью преобразователя преобразуются в мощность и частоту в цифровом виде, в дальнейшем микроконтроллер управляет оперативным запоминающим устройством (ОЗУ), электронным реле и дисплеем, на котором отражается цифровая информация, фиксирующая расход электроэнергии на подключенном к счетчику объекте. ОЗУ в некоторых моделях может играть роль передатчика информации, что дает возможность контролировать работу счетчика на расстоянии.

Электронные счетчики для замеров расхода электроэнергии в трехфазных схемах, могут работать как в трех,- так и четырехпроводных цепях. Устройства хранят информацию с привязкой ко времени. Показания можно снимать за определенный период времени и фиксировать следующие показатели:

  • активное потребление;
  • реактивное потребление;
  • действующие значения напряжения и тока;
  • частоту в каждой фазе.

Все это позволило создать многотарифные счетчики для подсчета потребления электроэнергии в разное время суток, по дням недели или сезонам.

Видео про счетчик

Из чего состоит и как работает счетчик потребления электроэнергии, расскажет видео ниже.

Разобравшись в устройстве электросчетчиков, с уверенностью можно сказать, что электронные аналоги намного лучше индукционных, они более точно отражают информацию, ее удобно считывать и просматривать, при необходимости дистанционно. Единственное преимущество индукционных счетчиков – это их цена, которая гораздо ниже, чем у электронных моделей.

Принцип работы электросчетчика

Принцип работы электросчетчиков

У каждого из нас в квартире, доме, гараже присутствует прибор учета электроэнергии, проще говоря электросчетчик.

Он подсчитывает количество потребленной активной электроэнергии за определенное количество времени.

Электронные электросчетчики

В них все реализуется с помощью микропроцессорной техники, схема ниже:

ТТ – трансформатор тока

С помощью датчиков тока ДТ и датчиков напряжения ДН снимаются значения тока и напряжения сети.

После датчиков сигналы поступают на аналогово-цифровой преобразователь, где сигнал с аналогового превращается в цифровой и поступает на микроконтроллер.

Микроконтроллер в свою очередь производит вычисления и отправляет данные на дисплей или через интерфейс на другое устройство.

С помощью таких электросчетчиков можно централизовано вести учет электроэнергии различных линий.

Главным достоинством электронных электросчетчиков над индукционными является:

  • отсутствие вращающихся частей, что снижает вероятность поломки;
  • возможность вести учет электроэнергии по различным тарифам с автоматическим переключением по времени суток (многотарифные счетчики);
  • меньшая погрешность измерения, особенно при малых нагрузках;
  • возможность передачи данных на расстояние через интерфейсы, что не требует постоянного присутствия для снятия данных;
  • удобность применения;
  • большая стоимость;
  • большая вероятность выхода из строя при больших скачках напряжения и тока сети;
  • более дорогостоящий и трудный ремонт;
  • выше чувствительность к климатическим условиям (например перепад температур);
  • труднее диагностировать неисправности;

Принцип работы электронного электросчетчика

Схема подключения однофазного электросчетчика

Данная схема предназначена для подключения любого однофазного счетчика электрической энергии.

Однофазные счетчики чаще всего подключают по схеме прямого включения в сеть и только в очень редких случаях через трансформаторы тока.

В клеммной колодке однофазного счетчика электроэнергии расположены 4 контакта:

  • 1 клемма — ввод фазы
  • 2 клемма — выход фазы на нагрузку (в квартиру)
  • 3 клемма — ввод нуля
  • 4 клемма — выход нуля на нагрузку (в квартиру)
  • винт напряжения — для отключения катушки напряжения в индукционных счетчиках при проведении государственной поверки.

Красным цветом обозначены токовая катушка (обмотка) и фазный провод, синим цветом — катушка (обмотка) напряжения и нулевой провод.

В данной схеме перед счетчиком электроэнергии установлен вводной автоматический выключатель.

Эту схему можно использовать для электроснабжения своей квартиры, дачи или коттеджа.

Схема подключения трехфазного электросчетчика

Принцип работы счетчика

Сигналы с датчиков тока и напряжения поступают на входы АЦП микропроцессора и преобразуются в коды. Микропроцессор, перемножая цифровые коды, получает величину, пропорциональную мощности. Интегрирование мощности во времени дает информацию о величине энергии.

Микропроцессор управляет всеми узлами счетчика и реализует измерительные алгоритмы в соответствии со специализированной программой; периодически определяет тарифную зону, формирует импульсы телеметрии, ведет учет электроэнергии, времени и календаря; обрабатывает поступившие команды по интерфейсу и, при необходимости, формирует ответ.

Кроме данных об учтенной электроэнергии в памяти счетчика хранятся калибровочные коэффициенты, тарифное расписание, серийный номер, версия программного обеспечения счетчика. Калибровочные коэффициенты заносятся в память на предприятии-изготовителе. При отсутствии напряжения питания процессор переходит на питание от литиевой батареи с напряжением 3 В и емкостью 120 мА·ч. Процессор синхронизирован кварцевым резонатором, работающем на частоте 32,768 кГц. Блок питания вырабатывает два гальванически изолированных напряжения для питания микропроцессора и цепей интерфейса.

Упростить алгоритм обработки информации и снизить затраты на комплектацию позволяет структурная схема:

Структурная схема счетчика ватт-часов активной энергии переменного тока Меркурий-200»

В этой структуре микроконтроллер (МК) выполняет функцию счетчика импульсов, пропорциональную активной мощности, вывод информации на дисплей и ряд специальных функций (изменение тарифов, сохранение информации в аварийных режимах, вывод служебной информации на внешние устройства и пр.). По мере накопления импульсов, соответствующих ватт-часам, значение накопленной энергии выводится на дисплей и записывается во FLASH-память. Если произойдет сбой, временное исчезновение напряжения сети, информация о накопленной энергии сохраняется во FLASH-памяти. После восстановления питающего напряжения эта информация считывается микроконтроллером, выводится на индикатор и счет продолжается с этой величины.

В случае реализации многотарифного СЭ, устройство должно обеспечивать обмен информацией с внешними устройствами по последовательному интерфейсу. Он может использоваться для задания тарифов, инициализации и коррекции таймера реального времени, получения информации о накопленных значениях энергии и т. д. Кроме того, интерфейс может обеспечивать подключение группы распределенных в пространстве СЭ в сеть с возможностью доступа к каждому из них.

Структурная схема многотарифного счетчика

Алгоритм работы структуры следующий. Память энергонезависимого ОЗУ разбита на 13 банков, в каждом из которых хранится информация о накопленной энергии по четырем тарифам: общем, льготном, пиковом и штрафном.

В первом банке накопления производятся с момента начала эксплуатации счетчика, следующие 12 банков соответствуют накоплениям за 11 предыдущих и за текущий месяц. Накопления за текущий месяц записываются в соответствующий банк, и таким образом имеется возможность определить, сколько было накоплено энергии за любой из 11 предшествующих месяцев.

Перед началом эксплуатации счетчика на заводе-изготовителе обнуляют содержимое банков памяти, т.е. накопление начинается с нулевых значений.

Переключение тарифов осуществляется по временным критериям: для каждого дня недели определяется свое тарифное расписание, т.е. времена начала основного и льготного тарифов и от нуля до трех интервалов времени для пикового тарифа. До 16 произвольных дней в году могут быть определены как праздничные, в эти дни работает тарифное расписание для воскресенья.

В счетчике может быть установлен режим ограничения по мощности и по количеству израсходованной энергии за месяц. В этом режиме счетчик фиксирует количество энергии, израсходованной сверх лимита. При превышении установленного лимита энергии производится либо переход на накопление по штрафному тарифу, либо отключение пользователя от энергосети. Штрафной тариф также может быть установлен принудительно (по интерфейсу связи) в случае, например, задолженности по оплате.

Каждый раз при включении счетчика в сеть (после очередного пропадания напряжения) фиксируется время и дата этого момента для возможности последующего контроля. Также предусмотрена запись времени и даты несанкционированного снятия крышки устройства.

Читать еще:  Как оплачивать электроэнергию по счетчику: снятие и расчет показаний

Через специальный разъем к счетчику можно подключить картридер для считывания информации с индивидуальной электронной карточки о количестве энергии, оплаченной потребителем.

Просмотр информации по предыдущим 11 месяцам производится при нажатии специально предусмотренной кнопки на корпусе счетчика. При каждом нажатии последовательно выводится информация о каждом тарифе соответствующего месяца, после чего происходит переход на предыдущий месяц, и процесс повторяется. Номер просматриваемого месяца и год отображаются на индикаторе даты. Если нажатия кнопки не происходит несколько секунд, счетчик возвращается в нормальный режим работы. При подключении картридера эта кнопка позволяет просмотреть количество энергии по каждому тарифу, имеющемуся в распоряжении у пользователя.

Классификация и типы счетчиков электроэнергии

Счетчики электрической энергии можно классифицировать по следующим принципам:

1. По принципу действия:

  • индукционные
  • электронные (статические)

2. По классу точности счетчики:

  • рабочие
  • образцовые

Класс точности счетчика – это его наибольшая допустимая относительная погрешность, выраженная в процентах.

В соответствии с ГОСТ Р 52320-2005, ГОСТ Р 52321-2005, ГОСТ Р 52322-2005, ГОСТ Р 52323-2005, счетчики активной энергии должны изготавливаются классов точности 0,2S; 0,2; 0,5S; 0,5; 1,0; 2,0 счетчики реактивной энергии — классов точности 0,5; 1,0; 2,0 (ГОСТ Р 5242520-05).

3. По подключению в электрические сети:

  • однофазные (1ф 2Пр однофазный двухпроводный)
  • трехфазные – трехпроводные (3ф 3Пр трехфазный трехпроводной)
  • трехфазные – четырехпроводные (3ф 4Пр трехфазный четырехпроводной)

4. По количеству измерительных элементов:

  • одноэлементные (для однофазных сетей (1ф 2Пр))
  • двухэлементные (для 3-х фазных сетей с равномерной нагр (3ф 3Пр))
  • трехэлементные (для трехфазных сетей (3ф 4Пр))

5. По принципу включения в электрические цепи:

  • прямого включения счетчика
  • трансформаторного включения счетчика:
  • подключения счетчика к трехфазной 4-проводной сети с помощью трех трансформаторов напряжения и трех трансформаторов тока
  • подключения счетчика к трехфазной 3-проводной сети с помощью трех трансформаторов напряжения и двух трансформаторов тока
  • подключения счетчика к трехфазной 3-проводной сети с помощью двух трансформаторов напряжения и двух трансформаторов тока

Энергетическое обследование • Программа энергосбережения • Консультация

6. По конструкции:

  • простые
  • многофункциональные

7. По количеству тарифов:

  • однотарифные
  • многотарифные

8. По видам измеряемой энергии и мощности:

  • активной электроэнергии (мощности)
  • реактивной электроэнергии (мощности)
  • активно-реактивной электроэнергии (мощности)

Активная мощность для 1-фазного счетчика, Вт: PА1ф2 = UфICosφ

Активная мощность для 3-фазного двухэлементного счетчика, включенного в 3-х проводную сеть, Вт: PА3ф3Пр = UАВIАCosφ1(UАВIА )+ UСВIСCosφ2(UСВIС)

Активная мощность для 3-фазного трехэлементного счетчика, включенного в 4-х проводную сеть, Вт: P3ф4Пр = UАIАCosφ1(UАIА) + UвIвCosφ2(UвIв) + UсIсCosφ3(UсIс)

Типы счетчиков:

Электромеханический счетчик – счетчик, в котором токи, протекающие в неподвижных катушках, взаимодействуют с токами, индуцируемыми в подвижном элементе, что приводит его в движение, при котором число оборотов пропорционально измеряемой энергии.

Однофазный электросчетчик СО-505, класс точности 2,0. Однофазный электросчетчик СО-1, класс точности 2,5.
Трехфазный электросчетчик СА3У-И670, класс точности 2,0. Электросчетчик СР4У-И673, класс точности 2,0.

Статический счетчик– счетчик, в котором ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой энергии.

На пример, однофазный электросчетчик Меркурий 201 или Меркурий 200.02, класс точности – 2,0. Или терхфазный электросчетчик Меркурий 230А, класс точности 1,0. Трехфазный электросчетчик АЛЬФА А1R, класс точности 0,5S.

Многотарифный счетчик – счетчик электрической энергии, снабженный набором счетных механизмов, каждый из которых работает в установленные интервалы времени, соответствующие различным тарифам.

Эталонный счетчик – счетчик, предназначенный для передачи размера единицы электрической энергии, специально спроектированный и используемый для получения наивысшей точности и стабильности в контролируемых условиях.

Основные понятия, термины и определения

Счетный механизм (отсчетное устройство): Часть счетчика, которая позволяет определить измеренное значение величины.

Отсчетное устройство может быть механическим, электромеханическим или электронным устройством, содержащим как запоминающее устройство, так и дисплей, которые хранят или отображают информацию.

Измерительный элемент – часть счетчика, создающая выходные сигналы, пропорциональные измеряемой энергии.

Цепь тока: Внутренние соединения счетчика и часть измерительного элемента, по которым протекает ток цепи, к которой подключен счетчик.

Энергоаудит • Энергетический паспорт • Программа энергосбережения

Цепь напряжения: Внутренние соединения счетчика, часть измерительного элемента и, в случае статических счетчиков, часть источника питания, питаемые напряжением цепи, к которой подключен счетчик.

Электросчетчик непосредственного включения (или прямого включения): Как правило 3-х фазный электросчетчик, включаемый в 4-х проводную сеть, напряжением 380/220В, без использования измерительных трансформаторов тока и напряжения.

Трансформаторный счетчик – счетчик, предназначенный для включения через измерительные трансформаторы напряжения (ТН) и тока (ТТ) с заранее заданными коэффициентами трансформации.

Показания счетчика должны соответствовать значению энергии, прошедшей через первичную цепь измерительных трансформаторов.

Основные понятия учета электроэнергии

Коммерческий учет электроэнергии – учет электроэнергии для денежного расчета за нее

Технический учет электроэнергии – учет для контроля расхода электроэнергии внутри электростанций, подстанций, предприятий, для расчета и анализа потерь электроэнергии в электрических сетях, а также для учета расхода электроэнергии на производственные нужды.

Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками.

Счетчики, устанавливаемые для технического учета, называются счетчиками технического учета.

Счетчики, учитывающие активную электроэнергию, называются счетчиками активной энергии.

Счетчики, учитывающие реактивную электроэнергию за учетный период, называются счетчиками реактивной энергии.

Средство измерений – техническое устройство, предназначенное для измерений.

Измерительный комплекс средств учета электроэнергии – совокупность устройств одного присоединения, предназначенных для измерения и учета электроэнергии: трансформаторы тока, трансформаторы напряжения, счетчики электрической энергии, линии связи.

Стартовый ток (чувствительность) – наименьшее значение тока, при котором начинается непрерывная регистрация показаний

Базовый ток – значение тока, являющееся исходным для установления требований к счетчику с непосредственным включением

Номинальный ток – значение тока, являющееся исходным для установления требований к счетчику, работающему от трансформатора

Максимальный ток – наибольшее значение тока, при котором счетчик удовлетворяет требованиям точности, установленным в стандарте ГОСТ Р 52320-2005.

Номинальное напряжение – значение напряжения, являющееся исходным при установлении требований к счетчику.

Технические требования к электросчетчикам

Общие требования:

  • Класс точности не хуже 0,5S
  • Соответствие требованиям ГОСТ Р (52320-2005, 52323-2005, 52425-2005)
  • Наличие сертификата об утверждении типа

Функциональные требования:

  • Измерение и учет активной и реактивной электроэнергии (непрерывный нарастающий итог), мощности в одном или двух направлениях (интервальные 30-и минутные приращения электроэнергии)
  • Хранение результатов измерений (профили нагрузки – не менее 35 суток) и информации о состоянии средств измерений
  • Наличие энергонезависимых часов, обеспечивающих ведение даты и времени (точность хода не хуже ±5,0 секунды в сутки с внешней синхронизацией, работающей в составе СОЕВ)
  • Ведение автоматической коррекции времени
  • Ведение автоматической самодиагностики с формированием обобщенного сигнала в «Журнале событий»
  • Защиту от несанкционированного доступа к информации и программному обеспечению
  • Предоставление доступа к измеренным значениям параметров и «Журналам событий» со стороны УСПД или ИВК ЦСОД

В «Журнале событий» должны фиксироваться время и дата наступления следующих событий:

  • попытки несанкционированного доступа
  • факты связи со счетчиком, приведших к каким-либо изменениям данных
  • изменение текущих значений времени и даты при синхронизации времени
  • отклонение тока и напряжения в измерительных цепях от заданных пределов
  • отсутствие напряжения при наличии тока в измерительных цепях
  • перерывы питания

– Счетчик должен обеспечивать работоспособность в диапазоне температур, определенными условиями эксплуатации. (-40.. +550С)

– Средняя наработка на отказ не менее 35000 часов

Цифровой электронный электросчетчик

Время на чтение:

Размер платы за электроэнергию зависит не только от количества подключенных приборов, но и от точности и типа счетчика. Один из самых надежных — электронный электросчетчик.

Суть работы любого счетчика заключается в измерении активной энергии и расчете потребления. В то же время имеются несколько вариантов конструкции счетчика. Данные приборы делятся:

  • В соответствии с принципом подключения — оборудование напрямую подключено или подключено в трансформаторную цепь.
  • В зависимости от измеряемых значений — однофазные и трехфазные.

Подключение однофазного счетчика

  • По типу конструкции — механические, электронные и гибридные.
  • По числу тарифов — одно- или многотарифные.

Трехфазный прибор в сети

Электронные устройства имеют ряд преимуществ: они более точны и позволяют использовать несколько цен на электроэнергию, при этом показания пересчитываются по этим ценам независимо от владельца.

Важно! Существуют также гибридные счетчики с цифровым интерфейсом и механическим вычислительным устройством, но используются они редко.

  • Уровень точности не менее 0,5S.
  • Соответствие требованиям ГОСТ Р (52320-2005, 52323-2005, 52425-2005).
  • Сертификат об утверждении типа.
  • Измерение и расчет активной и реактивной мощности (общая мощность для непрерывной работы), мощность в одном или двух направлениях (30-минутные приращения мощности).
  • Сохранять результаты измерений (на время не менее 35 дней) и информацию о состоянии измерительного прибора.
  • Наличие энергонезависимых часов, обеспечивающих точный показ даты и времени (с использованием внешней синхронизации с ежедневной точностью не менее ± 5,0 секунд в составе SOEV).
  • Поддержание автоматической коррекции времени.
  • Автоматическая самодиагностика через обобщенные сигналы в журнале событий.
  • Предотвращение несанкционированный доступ к информации и программному обеспечению.
  • Прибор должен обеспечивать работу в диапазоне температур, определяемых условиями эксплуатации. (-40 .. + 550С).
  • Среднее время наработки на отказ составляет не менее 35 000 часов.
  • Интервал тестирования — не менее 8 лет.

Принцип работы и схема подключения

Принцип работы счетчика основан на непосредственном измерении напряжения и тока: вся информация о потребляемой мощности подается в индикатор и сохраняется в памяти устройства.

Как устроен электронный счетчик электроэнергии

Электронный электросчетчик имеет следующие преимущества:

  • Позволяет более точно считывать информацию, тем самым предотвращая большую погрешности измерения электроэнергии.
  • Его размер намного меньше механического.
  • Он может автоматически переключаться между тарифами без необходимости присутствия хозяина. Это существенно экономит средства.
  • Электронная модель проверяется каждые 4-16 лет. Это необходимо для проверки правильности исчисления. Проверка выполняется в рамках правил для обеспечения согласованности измерений.

Важно! Первая проверка выполняется на заводе-изготовителе, дата указана в паспорте прибора.

Помимо преимуществ имеются и некоторые недостатки. К ним относятся более высокие затраты на приобретение самого приборов и их ненадежность: несмотря на гарантию производителя, электронные модели приходится заменять чаще, чем механические модели. Последние работают в течение десятилетий, потому что их устройство очень простое, и ломаться, по сути, нечему.

Напряжение тока внутри счетчика преобразуется в электрические импульсы. Их количество варьируется в зависимости от входной энергии. То есть чем больше потребляемая мощность, тем больше импульсов получает и считает устройство.

Электронный счетчик вместе со счетным устройством имеет дисплей, который показывает изменения в потреблении тока, максимальных и минимальных значениях и других данных, требуемых владельцем.

Инструкция по применению

Инструкция по эксплуатации и монтажу содержит следующие пункты:

  • Прибор может устанавливать персонал, прошедший инструктаж по мерам безопасности и имеющий квалификационную группу по электробезопасности не ниже уровня III (электрическая установка до 1000 В).
  • Перед установкой надо извлечь прибор из транспортной упаковки и провести внешний осмотр.
  • Убедиться, что корпус и защитная крышка распределительной коробки не имеют значительных повреждений.
  • Установить счетчик на рабочем месте, снять защитную крышку распределительной коробки и подключить к цепи напряжения
Читать еще:  Как выбрать конденсатор для электродвигателя

Важно! Подключение к сети проводить только с отключением питания

  • Установить крышку распределительной коробки и закрепить ее двумя винтами.
  • Включить питание и убедиться, что счетчик включен: индикатор показывает значение энергии, учитываемое в текущей зоне.
  • Отметить в таблице дату установки и дату ввода в эксплуатацию.

Монтаж счетчика в щит

Как самостоятельно проверить счетчик

Чтобы проверить работоспособность счетчика, нужно провести несколько шагов:

  1. Нужно убедиться, что прибор правильно подключен к сети 220 или 380 В в соответствии со схемой.
  2. Проверить, что диск не вращается произвольно. Для этого нужно отключить все автоматы в щитке и подождать некоторое время. Если счетчик все равно вращается, то он неисправен.
  3. Проверка намагниченности. Влияние магнита также меняет работу прибора. Проверить его наличие можно с помощью небольшой металлической иголкой или специальным прибором.

Проверка прибора с помощью специальных приборов

Электронный счетчик — дорогой, но точный прибор, который в дальнейшем поможет сэкономить на плате за электроэнергию. Сложность конструкции обеспечивает удобство работы, но также является причиной частых поломок.

Принцип работы электронного счетчика

Для расчёта электрической энергии, потребляемой за определённый период времени, необходимо интегрировать во времени мгновенные значения активной мощности. Для синусоидального сигнала мощность равна произведению напряжения на ток в сети в данный момент времени. На этом принципе работает любой счётчик электрической энергии. На рис. 1 показана блок-схема электромеханического счётчика.


Рис. 1. Блок-схема электромеханического счетчика электрической энергии

Реализация цифрового счётчика электрической энергии (рис. 2) требует специализированных ИС, способных производить перемножение сигналов и предоставлять полученную величину в удобной для микроконтроллера форме. Например, преобразователь активной мощности — в частоту следования импульсов. Общее количество пришедших импульсов, подсчитываемое микроконтроллером, прямо пропорционально потребляемой электроэнергии.


Рис. 2. Блок-схема цифрового счетчика электрической энергии

Не менее важную роль играют всевозможные сервисные функции, такие как дистанционный доступ к счётчику, к информации о накопленной энергии и многие другие. Наличие цифрового дисплея, управляемого от микроконтроллера, позволяет программно устанавливать различные режимы вывода информации, например, выводить на дисплей информацию о потреблённой энергии за каждый месяц, по различным тарифам и так далее.

Для выполнения некоторых нестандартных функций, например, согласования уровней, используются дополнительные ИС. Сейчас начали выпускать специализированные ИС — преобразователи мощности в частоту — и специализированные микроконтроллеры, содержащие подобные преобразователи на кристалле. Но, зачастую, они слишком дороги для использования в коммунально-бытовых индукционных счётчиках. Поэтому многие мировые производители микроконтроллеров разрабатывают специализированные микросхемы, предназначенные для такого применения.

Перейдём к анализу построения простейшего варианта цифрового счётчика на наиболее дешёвом (менее доллара) 8-разрядном микроконтроллере Motorola. В представленном решении реализованы все минимально необходимые функции. Оно базируется на использовании недорогой ИС преобразователя мощности в частоту импульсов КР1095ПП1 и 8-разрядного микроконтроллера MC68HC05KJ1 (рис. 3). При такой структуре микроконтроллеру требуется суммировать число импульсов, выводить информацию на дисплей и осуществлять её защиту в различных аварийных режимах. Рассматриваемый счётчик фактически представляет собой цифровой функциональный аналог существующих механических счётчиков, приспособленный к дальнейшему усовершенствованию.


Рис. 3. Основные узлы простейшего цифрового счетчика электроэнергии

Сигналы, пропорциональные напряжению и току в сети, снимаются с датчиков и поступают на вход преобразователя. ИС преобразователя перемножает входные сигналы, получая мгновенную потребляемую мощность. Этот сигнал поступает на вход микроконтроллера, преобразующего его в Вт·ч и, по мере накопления сигналов, изменяющего показания счётчика. Частые сбои напряжения питания приводят к необходимости использования EEPROM для сохранения показаний счётчика. Поскольку сбои по питанию являются наиболее характерной аварийной ситуацией, такая защита необходима в любом цифровом счётчике.

Алгоритм работы программы (рис. 4) для простейшего варианта такого счётчика довольно прост. При включении питания микроконтроллер конфигурируется в соответствии с программой, считывает из EEPROM последнее сохранённое значение и выводит его на дисплей. Затем контроллер переходит в режим подсчёта импульсов, поступающих от ИС преобразователя, и, по мере накопления каждого Вт·ч, увеличивает показания счётчика.


Рис. 4. Алгоритм работы программы

При записи в EEPROM значение накопленной энергии может быть утеряно в момент отключения напряжения. По этим причинам значение накопленной энергии записывается в EEPROM циклически друг за другом через определённое число изменений показаний счётчика, заданное программно, в зависимости от требуемой точности. Это позволяет избежать потери данных о накопленной энергии. При появлении напряжения микроконтроллер анализирует все значения в EEPROM и выбирает последнее. Для минимальных потерь достаточно записывать значения с шагом 100 Вт·ч. Эту величину можно менять в программе.

Схема цифрового вычислителя показана на рис. 5. К разъёму X1 подключается напряжение питания 220 В и нагрузка. С датчиков тока и напряжения сигналы поступают на микросхему преобразователя КР1095ПП1 с оптронной развязкой частотного выхода. Основу счётчика составляет микроконтроллер MC68HC05KJ1 фирмы Motorola, выпускаемый в 16-выводном корпусе (DIP или SOIC) и имеющий 1,2 Кбайт ПЗУ и 64 байт ОЗУ. Для хранения накопленного количества энергии при сбоях по питанию используется EEPROM малого объёма 24С00 (16 байт) фирмы Microchip. В качестве дисплея используется 8-разрядный 7-сегментный ЖКИ, управляемый любым недорогим контроллером, обменивающийся с центральным микроконтроллером по протоколу SPI или I2C и подключаемый к разъёму Х2.

Реализация алгоритма потребовала менее 1 Кбайт памяти и менее половины портов ввода/вывода микроконтроллера MC68HC05KJ1. Его возможностей достаточно, чтобы добавить некоторые сервисные функции, например, объединение счётчиков в сеть по интерфейсу RS-485. Эта функция позволит получать информацию о накопленной энергии в сервисном центре и отключать электричество в случае отсутствия оплаты. Сетью из таких счётчиков можно оборудовать жилой многоэтажный дом. Все показания по сети будут поступать в диспетчерский центр.

Определённый интерес представляет собой семейство 8-разрядных микроконтроллеров с расположенной на кристалле FLASH-памятью. Поскольку его можно программировать непосредственно на собранной плате, обеспечивается защищённость программного кода и возможность обновления ПО без монтажных работ.


Рис. 5. Цифровой вычислитель для цифрового счетчика электроэнергии

Ещё более интересен вариант счётчика электроэнергии без внешней EEPROM и дорогостоящей внешней энергонезависимой ОЗУ. В нём можно при аварийных ситуациях фиксировать показания и служебную информацию во внутреннюю FLASH-память микроконтроллера. Это к тому же обеспечивает конфиденциальность информации, чего нельзя сделать при использовании внешнего кристалла, не защищённого от несанкционированного доступа. Такие счётчики электроэнергии любой сложности можно реализовать с помощью микроконтроллеров фирмы Motorola семейства HC08 с FLASH-памятью, расположенной на кристалле.

Переход на цифровые автоматические системы учёта и контроля электроэнергии — вопрос времени. Преимущества таких систем очевидны. Цена их будет постоянно падать. И даже на простейшем микроконтроллере такой цифровой счётчик электроэнергии имеет очевидные преимущества: надёжность за счёт полного отсутствия трущихся элементов; компактность; возможность изготовления корпуса с учётом интерьера современных жилых домов; увеличение периода поверок в несколько раз; ремонтопригодность и простота в обслуживании и эксплуатации. При небольших дополнительных аппаратных и программных затратах даже простейший цифровой счётчик может обладать рядом сервисных функций, отсутствующих у всех механических, например, реализация многотарифной оплаты за потребляемую энергию, возможность автоматизированного учёта и контроля потребляемой электроэнергии.

Устройство и принцип работы цифрового электросчетчика

Для контроля затрат электричества в квартирах многоэтажек используется электронный счетчик электроэнергии. Подключение цифрового прибора осуществляется через общий трансформатор. В процессе работы счетчик постоянно измеряет мощность заданного участка сети и выводит ее величину в удобочитаемом виде.

  1. Конструкция и принцип работы
  2. Основные характеристики цифровых счетчиков
  3. Отличия электронных счетчиков от индукционных
  4. Надежность показаний и необходимость ремонта
  5. Обозначение показателей цифрового счетчика
  6. Критерии подбора
  7. Список лучших аппаратов учета

Конструкция и принцип работы

Измерительный аппарат совместим с однофазными и трехфазными цепями переменного тока. Его конструкция представлена:

  • корпусом из термостойкого пластика или металла с клеммной колодкой;
  • дисплеем – ЖК-индикатором, где отображаются данные и время, или механическим;
  • источником запитки электронной схемы;
  • токовым трансформатором – выполняет функции измерителя;
  • микроконтроллером, преобразующим сигнал на входе в электрические величины;
  • телеметрическим выходом для интеграции с АСКУЭ;
  • часами – позволяют отслеживать реальное время и даты;

Внешний вид электронного электросчетчика

  • супервизором – отслеживает колебания напряжения на входе и подает команду сброса микроконтроллеру, когда напряжение выключается либо включается;
  • системой управления;
  • оптическим портом, позволяющим снимать показания устройства.
  • Через оптический порт можно запрограммировать цифровой счетчик.

    Основные характеристики цифровых счетчиков

    На территории РФ приборы начали применять с момента приватизации энергетической отрасли и подорожания электричества. Электронные устройства обладают рядом положительных характеристик:

    • точность показаний при быстрой перемене напряжения или его снижении;
    • учет электроэнергии по нескольким тарифам;
    • подсчет различных типов энергии с помощью одного аппарата;
    • одновременно замеряется мощность, количество и качество энергоресурсов;
    • хранение данных в памяти и наличие к ним пользовательского доступа;
    • предотвращение несанкционированного доступа и хищения электричества;
    • дистанционное снятие показаний и предварительный подсчет потерь;
    • совместимость с автоматическими сервисами коммерческого учета электроэнергии.

    Прибор не могут взломать злоумышленники и подключиться к нему для кражи электричества. Интервал проверки изделия составляет 16 лет.

    Отличия электронных счетчиков от индукционных

    Индукционные модели работают по принципу создания электромагнитного поля в катушке и его взаимодействия с токопроводящим диском. Однофазный аппарат подключается к катушке-сети переменного тока параллельно. Магнитные потоки и вихревые токи взаимодействуют между собой только в диске. Индукционный счетчик будет функционировать нормально при фазовом сдвиге в 90 градусов. Энергозатраты зависят от интенсивности вращения диска, которая соответствует мощности потребления.

    Принцип работы эл счетчика основывается на подсчетах мощности активного и реактивного типа. Это позволяет точно подсчитывать энергозатраты, если в помещении трехфазный тип подключения.

    Индукционные модели считают расход по единому тарифу, цифровые приборы отслеживают параметры в зависимости от времени суток. Точность измерения нового счетчика – 1-й категории, традиционные выпускаются с классом точности 2,5.

    По сравнению с индукционным цифровой счетчик на собственные нужды затрачивает минимум энергоресурсов. Традиционные устройства нельзя поставить снаружи, а электронные могут работать в условиях мороза, защищены от воздействия влаги и пыли.

    Надежность показаний и необходимость ремонта

    Качественный цифровой электросчетчик отличается высокой точностью. Проверить параметры без нарушения целостности корпуса и пломб можно так:

    1. После прекращения подачи напряжения индикатор останавливается. Если учет продолжается – устройство неисправно.
    2. Счетчик всегда жужжит при работе, о неполадках свидетельствует самоход.
    3. Показания искажаются при отключении всех бытовых приборов. Обязательно проверяется наличие самохода.

    Тестирования лучше производить ночью, в условиях минимальной нагрузки на электросеть. Если самохода нет, импульсы индикатора отсутствуют на протяжении 15 минут. Импульс, возникший, когда подключение не произведено, означает поломку.

    Заниматься ремонтом цифрового счетчика должны только сотрудники компании энергосбережения. Пользователь обращается в инстанцию для получения разрешения на проверку и замену аппарата.

    Обозначение показателей цифрового счетчика

    На основании данных электронного счетчика определяется несколько показаний:

    • Энергозатраты за конкретный временной период. Понадобится вычесть из конечных показаний начальные. При необходимости расчетные данные умножают на коэффициент трансформации;
    • Подключение бытовой техники и освещения в определенный момент. Устанавливается по загоранию/выключению светового индикатора.
    • Параметры мощности, величины проходящего тока, процессы перегрузки сети и счетчика.

    Цифровые приборы можно запрограммировать на дневную и ночную тарификацию. Для этого достаточно выбрать время подсчета.

    Критерии подбора

    Перед покупкой устройства стоит обращать внимание на ряд параметров:

    • Допустимая величина тока. Цифровые модели рассчитаны на ток 5-60А, что подходит для квартир и частных домов.
    • Дата проверки. На трехфазном счетчике должна находится пломба не старше 1 года.
    • Количество пломб. Первое опломбирование делают государственные органы – отметку проставляют на кожухе. Вторая пломба на зажимной крышке – от предприятия энергоснабжения.
    • Опционал. Чем больше функций, тем дороже счетчик. Но внутренний тарификатор создает график нагрузки, а в журнале событий отмечается повышение и понижение напряжения в каждой фазе.
    • Обслуживание и гарантии. Качественные модели имеют большой гарантийный период. Сервисный центр бренда есть в городе покупателя.
    • Интервал проверки. Оптимально – от 10 до 16 лет.

    Продавец обязан поставить печать на приборе и записать его стартовые показания.

    Список лучших аппаратов учета

    Потребители и профессиональные электрики рекомендуют несколько устройств.

    Меркурий 201.8

    Прочный бюджетный прибор с разрешением ЖК-экрана 7 разряда и классом точности 1. Рассчитан на сеть с напряжением 220-230 В и силой тока 5-80 А. Исправно работает в условиях жары и мороза при влажности до 90 %. Оснащен:

    • модульным корпусом;
    • измерительным токовым конвертером;
    • винтовыми клеммами;
    • светодиодной подсветкой зоны показаний.

    Эксплуатационный срок модели – 30 лет, ревизионный – 16 лет.

    Нева М. Т.123

    Аппарат с рабочим напряжением 230 В и номинальным током 5 А. Гарантия изготовителя – 30 лет. Предназначен для измерения:

    • частоты напряжения в сети;
    • активной мощности электролинии;
    • показателей токового напряжения и силы.

    Модель имеет 1 класс точности, может устанавливаться в офисах, домах, торговых залах и квартирах.

    Энергомера CE102M S7 145-JV

    Класс точности модели – 1. Она не подвергается климатическим, электромагнитным и механическим повреждениям. Устройство рассчитано на силу тока 5-60 А, рабочее напряжение 220-230 В. Может работать без сбоев при температуре от -45 до +70 градусов и влажности 98 %. Дополнительные возможности:

    • шпунт;
    • память энергонезависимого типа;
    • интерфейсы связи;
    • пользовательское перепрограммирование;
    • вывод данных за нужный период времени;
    • снятие информации без напряжения.

    В память счетчика нельзя внести корректировки.

    Электронные счетчики – это современные учетные аппараты с широкими функциональными возможностями. Они гарантируют точность измерений, отличаются надежностью и стойкостью к внешним воздействиям.

    Принцип работы электронного счетчика электроэнергии

    Учет электроэнергии для предприятий

    Комплексные решения для малого и среднего бизнеса

    Передача почасовых отчетов в энергокомпании

    Сдача отчетности в форматах 80020 по регламентам энергокомпаний

    Снижение стоимости электроэнергии до 35%

    Перевод на выгодную ценовую категорию «Под ключ»

    Контроль качества электроэнергии

    Фиксация отклонений напряжения и подготовка претензий к энергокомпаниям

    Оперативный контроль электропотребления объектов в любое время на своем мобильном устройстве

    Электросчётчики с модемами

    Комплекты оборудования для быстрого внедрения АСКУЭ

    Решения на базе Ваших счётчиков

    АСКУЭ с модемом или без него

    Как удалённо опрашивать электросчетчик

    Системы АСКУЭ в нашей стране набирают большую популярность. По данным исследовательского агентства J’son&Partners Consulting, с 2010 года количество счетчиков, которые передают показания в режиме онлайн, увеличилось с 5 млн. до 32,55 млн. Такой рост не удивителен, в автоматизированных системах есть ряд больших преимуществ:

    1. Доступ к показаниям всех объектов в одном окне. Нет необходимости ездить по объектам, для передачи показаний в Энергосбыт, достаточно щелкнуть пару раз мышью на компьютере, чтобы увидеть какое потребление было по всем объектам за последний месяц.
    2. Автоматический сбор профиля мощности. Если предприятие сидит на почасовом тарифе за электроэнергию, оно обязано сдавать информацию о почасовом потреблении. То, ради чего энергетики каждый месяц подключают компьютер к счетчику, потом формируют отчеты для отправки поставщику электроэнергии, в АСКУЭ делается в пару кликов. Это освобождает десятки часов для более важных дел.
    3. Контроль качества электроэнергии. Современные счетчики способны следить за параметрами электроэнергии, а вовремя отследить и оповестить о проблемах в сети можно только с помощью АСКУЭ.
    4. Расчет выгодного тарифа на электроэнергию. Некоторые АСКУЭ способны определить самую выгодную ценовую категорию, что снизит стоимость электроэнергии до 30%.

    Плюсов от использования АСКУЭ достаточно много. Давайте разберем, как это работает.

    Принцип работы

    Для того, чтобы собирать показания онлайн, к электросчетчику необходимо подключить модем, через который будет совершаться обмен данными между прибором учета и системой АСКУЭ. Ниже мы разберём какие электросчетчики и модемы понадобятся.

    Для передачи данных в 2018 году используют следующие технологии:

    1. GSM/GPRS – передача данных по сетям сотовой связи;
    2. RF, ZigBee – беспроводная передача данных по радиоканалу;
    3. PLC – передача данных по силовым проводам 220/380В;
    4. Ethernet – передача данных по интернету;
    5. LoRaWAN — технология беспроводной передачи данных.

    У каждой технологии свои особенности, подробнее о них вы можете почитать в этих статьях:

    Весь принцип работы сводится к простой схеме: электросчетчик через специальный интерфейс (чаще всего RS485) подключается к модему, который обменивается данными с сервером АСКУЭ. Или электросчетчик со встроенным модемом обменивается данными с сервером АСКУЭ.

    Теперь разберём, что потребуется для организации АСКУЭ.

    Электросчетчик

    Нам понадобится современный электронный счетчик с интерфейсом RS485. Также можно использовать электросчетчики со встроенным модемом, но они стоят дороже.

    • Меркурий 206, 203.2Т, 230, 233, 234, 236 в маркировке которых присутствуют буквы R или G;
    • Энергомера СЕ102(М), СЕ201, СЕ301, СЕ303, СЕ306 в маркировке которых присутствуют буквы A или G;
    • Нева 113, 114, 123, 124, 313, 314, 323, 324 в маркировке которых присутствует E4;
    • Альфа А1140, А1180 в маркировке которых присутствует буква B;
    • ПСЧ-4ТМ.05МК, ПСЧ-4ТМ.05МН, ПСЧ-4ТМ.05МД, ПСЧ-3ТА.07.x1x;
    • СЭТ-4ТМ.02М, СЭТ-4ТМ.03M

    На практике себя хорошо зарекомендовали счетчики производства компании «Инкотекс»: Меркурий 206 PRNO, Меркурий 230 ART-0x PQRSI(D)N, Меркурий 234 ART-0x P.

    Модем

    Выбор модема зависит от технологии передачи данных, которой Вы собираетесь воспользоваться.

    Своим клиентам мы рекомендуем GPRS-модемы или Ethernet-модемы, потому-что RF, ZigBee, PLC сильно подвержены помехам, LaRaWAN окупается когда количество счетчиков в одной сети более 200. Наиболее практичны GPRS-модемы от производителей iRZ и TELEOFIS.

    На практике себя хорошо зарекомендовали модемы iRZ ATM21, TELEOFIS WRX768, TELEOFIS ER108.

    Настройка удаленного опроса

    После того, как установили оборудование, переходим к настройке удалённого опроса

    Зарегистрировавшись сейчас, у Вас активируется бесплатный 7-дневный период. Этого будет достаточно, чтобы настроить оборудование и провести бесплатное тестирование системы.

    После успешной регистрации, Вы увидите такую страницу:

    Где необходимо нажать “Создать счетчик”.

    Теперь указываем название объекта, на котором будем производить удаленный опрос, марку счетчика и его номер.

    Если счетчик однотарифный или поддерживает более 2 тарифов указываем это в тарифных зонах, если есть желание, можно переименовать название тарифных зон. Нажимаем кнопку “Сохранить и настроить АСКУЭ”.

    Теперь мы видим окно настроек АСКУЭ.

    Выбираем тип счетчика из выпадающего списка. Сетевой адрес чаще всего поставляется автоматически, если нет, то должен быть введен согласно руководству эксплуатации счетчика.

    На выборе типа соединения мы остановимся подробнее:

    • GSM модем — опрос электросчетчика будет осуществляться звонком на СИМ-карту установленной в модем. Этот способ достаточно дорогой — 2 рубля за каждый опрос. Мы рекомендуем не использовать этот тип соединения, а настроить модем для опроса по GPRS.
    • GPRS модем — это решение идеально подходит для счетчиков со встроенным модемом. Опрос будет осуществляться при подключении модема к серверу яЭнергетик через GPRS.
    • Интернет соединение (TCP клиент) — этот пункт нужно выбрать, если для опроса счетчика будет использоваться Ethernet модем, подключенный к интернету, который самостоятельно будет устанавливать соединение с сервером яЭнергетик.
    • Интернет соединение (TCP сервер) — этот пункт нужно выбрать, если для опроса счетчика будет использоваться Ethernet модем, подключенный к интернету. Модем должен быть со статическим IP-адресом, чтобы сервер яЭнергетик мог подключиться к нему и провести опрос.
    • Интернет соединение (TCP клиент) с протоколом TELEOFIS — этот пункт необходимо выбрать если счетчик будет опрашиваться через Ethernet конвертер TELEOFIS.
    • GPRS модем с протоколом IRZ — этот пункт необходимо выбрать если счетчик будет опрашиваться через GPRS модем iRZ.
    • GPRS модем с протоколом TELEOFIS — этот пункт необходимо выбрать если счетчик будет опрашиваться через GPRS модем TELEOFIS.
    • GPRS модем SprutNet PRO BGS2 — этот пункт необходимо выбрать если счетчик будет опрашиваться через GPRS модем SprutNet PRO BGS2.
    • GPRS модем с протоколом CE-NetConnections (Энергомера) — этот пункт необходимо выбрать если счетчик будет опрашиваться через встроенный GPRS модем в счетчиках Энергомера.
    • GSM шлюз RG 107 — опрос электросчетчика будет осуществляться через GSM шлюз RG 107.
    • Соединение со шлюзом RG 107 через сервер Тайпит — опрос электросчетчика будет осуществляться через шлюз RG 107, который устанавливает соединение с серверами компании «Тайпит».
    • Вега СИ-13 — опрос электросчетчиков будет осуществляться через базовую станцию Вега СИ-13 к которой будут подключены электросчетчики по технологии LoRaWAN.

    В нашем примере будет использоваться модем iRZ ATM21.A, поэтому выбираем «GPRS модем с протоколом IRZ», вводим IMEI модема и указываем, что счетчик будет опрашиваться через отдельное устройство.

    Адрес и порт для подключению к серверу будет выдан после завершения настроек.

    При необходимости меняем пароли первого и второго уровня электросчетчика для подключения к нему.

    Нажимаем кнопку «Сохранить».

    яЭнергетик выдаст окно, где указаны параметры, которые нужно будет записать в модем, для подключения его к серверу АСКУЭ.

    Мы уже писали статьи по настройке некоторых модемов. Вы можете ознакомится с ними в этих статьях:

    После настройки АСКУЭ и модема, необходимо проверить его работоспособность. Для этого внутри счетчика открываем вкладку «Показания» и нажимаем кнопку «Опросить».

    После успешного опроса Вы увидите сообщение о получении нового показания в таблице.

    Поздравляем! Система готова к работе!

    Copyright — © яЭнергетик, 2020г. При любом использовании опубликованных материалов и содержимого данной статьи требуется указывать источник «яЭнергетик.рф»

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector