400volt.ru

Домашнему электрику
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения магнитного пускателя с тепловым реле

Схема Подключения Пускателя

Тоже ничего сложного. Второй тип применяется более широко, поскольку большинство устройств функционирует ограниченный период, пребывая основное время в состоянии покоя.


Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами например, фазы B и C.

Дело в том самом четвертом контакте.
подключение КМИ-11860

Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы. Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе.

В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки на фото выше это A2. Располагаться управляющие элементы могут в разных корпусах или одном.

Для контакторов, используемых в электросетях, это и В. Поэтому кнопку выключения можно отпустить, и это никак не повлияет на состояние контактора.

Но так-как пятого контакта, в большинства магнитных пускателей нет, можно поставить дополнительный контакт. Поэтому при покупке и выборе контактора стоит учесть этот нюанс.

Вот ещё вариант.

Подключение магнитного пускателя по принципу ,,пуск—стоп,,

Схема подключения магнитного пускателя на 380 В

Некоторые характеристики магнитных пускателей можно посмотреть в таблице Отличия магнитного контактора от пускателя весьма условны. Прежде всего, с его помощью легко работать с асинхронным двигателем. Была ли Вам полезна данная статья? При работе какого то станка, например распиловочного, пропало напряжение в сети.

Привожу примеры статей, в которых через пускатели включаются ТЭНы:. Посмотрите на схему реверсивного включения двигателя ниже: 9.

Схема подключения трехфазного двигателя через пускатель на В Как видите, схема практически не изменилась. Катушки пускателей также включаются с выходов контроллера.

Если этим изделием будет автоматический выключатель, в котором имеется тепловая защита, он отключится из-за нагревания корпуса.

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Организация сигнальных цепей более сложная.

Если устройство рассчитано на работу в сети с напряжением В, то именно на указанные контакты будет подаваться это напряжение.
Контактор/Магнитный пускатель применение в быту+теория. ABB ESB. Мастер выключатель

Принципиальное устройство

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя. Включает контактор МП управляющий импульс, который исходит от пусковой кнопки после ее нажатия.

Так как если электромагнит будет рассчитан на постоянное напряжение, то понадобится именно такой источник. Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели. Пример схемы электропривода с использованием контактора и тепловых реле показан далее.

Для организации этого вводится шунтирующая пусковую кнопку катушка, которая ставится на самоподпитку, организовывая цепь самоподхвата.

Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. Контактор выполняет ту же роль, что и пускатель. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.

Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле — 3,5 А. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку.


Напряжение с обозначением — значит разные фазы. Устройство магнитного пускателя При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. Снять напряжение можно с выходов с обозначением T1, T2 и T3, которое можно использовать для питания ветрогенератора, аккумулятора и других приборов. Если катушка питается постоянным током, на ее сердечнике располагается диэлектрическая прокладка для предотвращения слипания намагнитившихся деталей.

Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем. Реализация этого алгоритма производится с помощью замыкания в МП вспомогательных контактов. Нажатие на кнопку включения замыкает цепь катушки. Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, то есть до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии. Так как если электромагнит будет рассчитан на постоянное напряжение, то понадобится именно такой источник.

Подключение последней выполняется к выходу одного из МП, а первой — к выходу второго. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. При достижении заданной температуры, которая может быть регулирована, тепловое реле сработает и его контакты разорвут цепь катушки электромагнита контактора КМ. Читайте также.
Как подключить трехфазный двигатель через магнитный пускатель.

Схема подключения магнитного пускателя на 220 В

Благодаря этому на катушку поступает фазное напряжение L3. Когда питания нет, то пружинка удерживает контакты разомкнутыми.

Главной особенность контактора, отличающего его от автомата, является отсутствие всякой защиты.

А также нельзя включать этот аппарат со снятыми дугогасительными камерами, это приведут к короткому замыканию. В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. Для более равномерного усилия, возникающего при протекании через катушку переменного тока, в ней делается короткозамкнутый виток.

Лучше подобрать пару, оснащенную нормально замкнутыми контактами. При этом контакты меняют свое положение на фото картинка справа. Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2.

Это и заставляет трехфазный двигатель вращаться в разные стороны. Схемы подключения магнитного пускателя Стандартная схема. А ещё вам понадобится полезный прибор — пробник электрика , который легко можно сделать самому. Отличительной особенностью конструкции электромагнита, работающего с переменным током, является наличие короткозамкнутого витка, который препятствует гудению его железа во время работы.

Магнитный контактор имеет немного другой внешний вид: Габариты контакторов зависят от его мощности. Может коммутировать как цепи постоянного, так и переменного тока. При этом положении на нагрузку питание не подается. Можно провода перекинуть.

Эта схема даже более предпочтительна, так как вся схема с пускателем на В может быть собрана вообще без нуля. Организация данного принципа достигается через установку на каждом МП перемычки на нормально разомкнутых контактах. Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Что же делать, если в руки попал пускатель не на В, а на В?

Для большей наглядности условно отметим их питающие клеммы цифрами 1—3—5, а те, к которым подключен двигатель как 2—4—6. Рекомендуем прочитать:. В прорези нижней части магнитопровода устанавливается катушка.
Реверсивные магнитные пускатели в однофазной сети. Реверсивная схема подключения электродвигателя.

Схемы подключения магнитного пускателя

Пускатель, схема “звезда-треугольник”

Сразу отсылаю читателя к статьям, которые предшествуют этой – Виды и отличия контакторов и пускателей, и Подключение асинхронного электродвигателя. Очень рекомендую ознакомиться, перед дальнейшим чтением.

Скажу также, что на языке электриков “контактор” и “пускатель” очень переплетены, и я в статье буду говорить и так, и эдак.

Повторюсь, чтобы освежить в памяти. Магнитный пускатель – устройство, которое обязательно содержит контактор (как главный коммутационный элемент), а также может содержать:

  • мотор-автомат либо защитный автомат (как устройство рабочего или аварийного отключения),
  • тепловое реле (как устройство аварийного отключения при перегрузке и обрыве фазы),
  • кнопки “Пуск”, “Стоп”, различные переключатели режимов схемы,
  • схема управления (может содержать те же кнопки, а может – контроллер),
  • индикация работы и аварии.

Различные схемы подключения магнитных пускателей и их отличия рассмотрим ниже.

Типовая схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских станках и другом простом оборудовании на 2-3 двигателя используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “ Пуск ” и “ Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Часто в таких схемах пускатель не включается из-за того, что у этой кнопки “подгорают” контакты.

На схеме не показан защитный автомат цепи управления, он ставится последовательно с кнопкой “Стоп”, номинал – несколько ампер.

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Не путать с блокировкой в реверсивных схемах, см. ниже.

Контакты “Самоподхвата” физически расположены на одном креплении с силовыми контактами контактора, и работают одновременно.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Часто в таких схемах бывает, что пускатель не становится на “самоподхват”. Дело в том самом четвертом контакте.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют тепловое реле типа РТЛ (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у “них”)

6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) – контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки “Стоп”, и стоит в той же цепи, последовательно. Где его поставить – не особо важно, можно на участке схемы L1 – 1, если это удобно в монтаже.

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:

7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Внимание! Цепь управления (цепь, через которую питается катушка пускателя КМ) должна обязательно быть защищена автоматом с током не более 10А. Данный защитный автомат на схеме не показан. Спасибо внимательным читателям!)

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он защищал подходящие провода от перегрева.

Пример. Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле – 3,5 А. Провода питания двигателя можно взять 1,5 мм2. Ток они держат до 16А. И автомат вроде можно поставить на 16А? Однако, не надо действовать топорно. Лучше поставить что-то среднее – 6 или 10А.

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:

8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF – это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя “спрятана” в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы “проинформировать” контроллер о аварии. Часто этот контакт просто-напросто входит в контрольную цепь, и останавливает весь станок.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Правое вращение (применяется чаще всего) – когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Левое вращение – против часовой.

Смена направления вращения реализуется общеизвестным способом – меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Читать еще:  Схема разводки электропроводки в квартире

Когда включен пускатель КМ1, это будет “правое” вращение. Когда включается КМ2 – первая и третья фазы меняются местами, движок будет крутиться “влево”. Включение пускателей КМ1 и КМ2 реализуется разными кнопками “ Пуск вперед ” и “ Пуск назад “, выключение – одной, общей кнопкой “ Стоп ” , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает “защиту от дурака”. Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это – электрическая защита от того же дурака. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки “Пуск” сразу, ничего не получится – двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую – моветон среди электриков.

Важно! Если существует даже минимальная вероятность неправильного направления вращения двигателя – обязательно ставьте реле контроля фаз! Вот пример – как мы сожгли винтовой компрессор за несколько тысяч евро из-за того, что перепутали фазы при подключении.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

Реверсивное управление гидравликой

А вот пример реверсивного управления клапанами, из статьи про гидравлический пресс:

Электрическая схема управления гидравликой

То, что применяются реле, не должно сбивать с толку. Фактически контактор и реле – суть одно устройство, отличие только в конструкции и параметрах.

Фактически, схема повторяет схему для двигателя, только вместо кнопки “Стоп” – два концевых выключателя, и кнопки SB1, SB2 – с дополнительными блокировочными НЗ контактами. Подробное описание работы схемы – здесь.

Работа реверсивного пускателя также подробно описана в статье про подключение генератора к сети дома.

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто – надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

Видео

Вот как интересно вещает на тему статьи Алекс Жук:

На этом всё, жду комментариев и обмена опытом!

Как подключить магнитный пускатель

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

Устройство магнитного пускателя

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Так выглядит в разобранном виде

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Читать еще:  Условные обозначения в различных электрических схемах

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Схема подключения магнитного пускателя и теплового реле

Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

Проведение подготовительных работ

Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

Для подключения данного оборудования необходимо использовать две кнопки:

  • пуск;
  • стоп.

Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить. Коммутация этих приспособлений не производится.

Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

Особенности подключения магнитных пускателей

Схема магнитного пускателя характеризуется наличием:

  • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
  • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок-контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

Включение работы магнитного пускателя производится с помощью кнопки Пуск, которая смыкает цепь, а отключение – с помощью кнопки Стоп, которая производит расцепление цепи.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.

Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и впоследствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

Тепловое реле для электродвигателя схема подключения

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset . Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Характеристики реле

При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме

Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Схема подключения теплового реле – принцип работы, регулировки и маркировка

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключениев схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Содержание статьи

  • Основные характеристики тепловых реле
  • Устройство и принцип работы тепловых реле
  • Виды тепловых реле
  • Схема подключения теплового реле
  • Регулировка теплового реле
  • Маркировка тепловых реле
Читать еще:  Последовательное соединение резисторов

Основные характеристики тепловых реле

Основные характеристики теплового реле, учитываемые при выборе подходящего варианта:

  • Номинальный ток защиты. Выбирается в соответствии с номинальным током нагрузки. Номинальный ток термореле должен быть в полтора раза выше Iном защищаемого двигателя.
  • Интервал регулирования установки тока срабатывания.
  • Напряжение цепи и характер тока – постоянный или переменный. При выходе напряжения за допустимые пределы термореле выйдет из строя.
  • Номенклатура и число вспомогательных контактов управления. Некоторые ТР имеют дополнительные контакты, управляющие функционированием самого теплореле и обслуживаемой нагрузки.
  • Мощность коммутации. Важное свойство ТР, которое характеризует выходную мощность нагрузки.
  • Граница (порог) срабатывания. Это коэффициент, величина которого зависит от величины Iном. Чаще всего этот коэффициент находится в пределах 1,1-1,5.
  • Чувствительность к асимметрии фаз. Этот параметр равен отношению фазы с перекосом к фазе, по которой проходит Iном.
  • Класс отключения. Характеризует усредненный период срабатывания устройства.

Устройство и принцип работы тепловых реле

Для защиты электродвигателей и другого электрооборудования чаще всего применяют ТР с биметаллическими пластинами.

В конструкцию биметаллического теплового реле входят:

  • Биметаллическая пластина. Изготавливается из двух сплавов, обладающих разными коэффициентами термического расширения. Обычно это инвар (низкий Кр) и хромоникелевая сталь (более высокий Кр). Между собой их сваривают или соединяют прокаткой. Один из этих металлов нагревается быстрее, другой – медленнее. При перегрузке по току часть пластиныс высоким Кр прогибается ко второй частипластины, которая имеет меньший Кр. Такое движение влияетчерез толкатель на группу контактов.
  • Регулятор тока установки. С его помощью устанавливают максимальное значение тока, выше которого ТР обесточивает цепь. Ток срабатывания регулируется путем увеличения или уменьшения зазора между основной пластиной и толкателем.
  • Электрические контакты. Их подключают к обмоткам магнитного пускателя теплового реле. Обычно в ТР имеются два контакта – нормально замкнутый и нормально разомкнутый. При силовом воздействии биметаллической пластинки контакты меняют свое положение на противоположное.

Нагрев биметаллической пластины происходит по одной из двух схем: непосредственно из-за тока перегруза или косвенно, через отдельный термочувствительный элемент. В одном устройстве могут соединяться оба этих принципа, что значительно повышает его эффективность. При превышении критических величин тока потребителя реле разомкнет цепь и обесточит МП, а следовательно, защищаемое электрооборудование.

На срабатывание релейного элемента может повлиять повышенная температура окружающей среды. Для компенсации этого явления и предотвращения ложных срабатываний в конструкции ТР предусматривают дополнительные биметаллические пластины, которые прогибаются в сторону, противоположную пространственному положению основного элемента.

Виды тепловых реле

Производители предлагают несколько типов ТР, которые отличаются между собой конструктивными особенностями и видом применяемых МП.

  • ТРП. Однополюсный коммутационный аппарат, имеющий комбинированный вариант нагрева. Используется в сетях постоянного тока, в которых напряжение не превышает 400 В, для защиты асинхронных двигателей. Устойчив к ударным и вибрационным нагрузкам.
  • РТЛ. Защищает электромоторы от затянутого пуска, асимметрии токов, перегрузов, при исчезновении фазы.
  • РТТ. Обеспечивает защиту асинхронных трехфазных машин с КЗ ротором от перегрузок, затянутого старта и перекоса фаз.
  • ТРН. Используется в электросетях постоянного тока. Служат для контроля пуска электрических установок и рабочего режима двигателя.
  • РТИ.Функционирует совместно с автоматическими выключателями или предохранителями.
  • РТК. Предназначен для использования в цепях автоматики, контролирует температурный режим в корпусе электрического оборудования.

Перечисленные ТР не защищают электроцепи от короткого замыкания.

Схема подключения теплового реле

Подсоединение ТР к силовым установкам осуществляется в соответствии с инструкцией производителя. В большинстве случаев ТР к защищаемому устройству подключают через нормально замкнутый контакт, который последовательно соединяют с клавишей «стоп». Разомкнутый контакт включает теплозащиту при выходе тока за допустимые значения. Схемы подключения теплового реле в цепь двигателя или другого электрооборудованиямогут быть и другими, в зависимости от присутствия дополнительных устройств.

Стандартная схема подключения теплового реле

Тепловое реле устанавливают и подключают вместе с магнитным пускателем, выполняющим функции включения электрического привода. Возможны варианты, когда тепловое реле устанавливают на DIN-рейку или отдельную панель.

При подключении потребителя в сеть 220 В или 380 В все фазы после магнитного пускателя пропускают через тепловое реле, а затем уже подсоединяют к электродвигателю. При включении пусковой кнопки напряжение электропитания попадает на обмотку МП, который включает электродвигатель. Если ток нагрузки увеличивается до значения, превышающего критическую величину, тепловое реле срабатывает и отключает электродвигатель.

Тепловое реле ТРН имеет всего два входящих подключения. Неподключенный провод фазы в этом случае пускают непосредственно от пускателя к двигателю. Поскольку ток в электродвигателе изменяется пропорционально, допускается контроль только двух из них (любых).

Регулировка теплового реле

Для эффективного выполнения функции отключения электродвигателя или другого обслуживаемого аппарата необходимо правильно отрегулировать настройки ТР таким образом, чтобы вероятность ложных срабатываний была исключена. Настройку рекомендуется осуществлять на специализированном стенде способом фиктивных нагрузок:

  • Через термочувствительный элемент пропускают ток для моделирования реальной тепловой нагрузки.
  • С помощью таймера определяют время срабатывания. При проведении настройки с помощью контрольного винта при токе 1,5 Iн время срабатывания должно быть не более 2,5 минут, 5-6 Iн – не более 10 секунд.

Маркировка тепловых реле

В маркировке указывается большинство важных характеристик ТР. Пример обозначения: РТЛ-Х1Х2Х3-Х4-Х5А-Х6А-Х7Х8, где

  • РТЛ – тип теплового реле;
  • Х1 – ном.ток, 1 – до 25 А, 2 – до 100 А, 3 – до 250 А, 4 – до 510 А;
  • Х2– 3 цифры (условно), обозначающие диапазон токовой уставки;
  • Х3–литера, характеризующая исполнение;
  • Х4– способ возврата: 1 – ручной, 2 – самовозврат;
  • Х5 – Iном, А;
  • Х6 – диапазон уставки по току, А;
  • Х7– климатическое исполнение;
  • Х8– торговая марка.

    Тепловое реле – эффективный элемент защиты электродвигателей и другого электрооборудования, который выгодно отличается от входного автоматического выключателя тем, что не подвержен ложным срабатываниям при кратковременных скачках тока.

    Схема подключения магнитного пускателя

    Магнитные пускатели, а также контакторы, предназначаются для управления работой электродвигателей и других электрических устройств. Они рассчитаны на частое включение/выключение подобных устройств. Могут работать, как в однофазных, так и в 3-х фазных цепях переменного тока, а также в цепях постоянного тока.

    Чем отличаются пускатели от контакторов

    Предназначение этих видов устройств практически одинаковое, но разница все же имеется. Принцип работы этих устройств также одинаковый, поскольку их работа основана на принципе работы электрического магнита. Рассчитаны они для работы в цепях постоянного тока, с напряжением до 440V, а также в цепях переменного тока с напряжением до 600 V. Те и другие имеют:

    • Рабочие (силовые) контакты, для управления работой нагрузки.
    • Вспомогательные (управляющие) контакты, обеспечивающие функционирование сигнальных устройств.

    Казалось бы, разницы нет, но она есть и достаточно существенная. Пускатели выпускаются для работы на малые токи до 10А, а вот контакторы предназначены для коммутации электрических цепей с большими токами, которые составляют сотни ампер. В связи с этим, их конструкция может отличаться из-за наличия дугогасительных камер.

    Внешний вид не всегда так сильно отличается, но бывает и так

    Кроме этого, пускатели выпускаются в корпусах из прочной пластмассы, а контакторы корпусов не имеют (в большинстве случаев), поэтому их установка требует защищенных мест, вроде боксов, вход в которые не возможен для посторонних лиц, кроме обслуживающего персонала. Кроме этого, контакторы должны быть защищены от влаги, пыли и грязи.

    Пускатели в основном предназначаются для включения/отключения асинхронных 3-х фазных электродвигателей. В связи с этим данные устройства оборудованы 3 парами рабочих контактов, а также вспомогательными контактами, которые обеспечивают подачу питания на пускатель в рабочем режиме. Подобные функциональные возможности достаточно универсальные, поэтому пускатели используются для управления работой различных устройств, находящихся на значительном удалении.

    Поскольку их принцип работы практически не отличается, то зачастую пускатели называют «малогабаритными контакторами». В основном это можно встретить в прайс-листах, хотя ранее четко разграничивались контакторы и пускатели. Как правило, даже электрики и те больше работали с пускателями.

    Принцип работы и устройство

    Очень важно понять, на чем основан принцип работы пускателей, а также как они устроены, чтобы лучше понимать схему подключения.

    Основу конструкции представляет электрический магнит, который, в свою очередь, состоит из подвижной и неподвижной части. Магнитопровод отличается «Ш» — образной формой, при этом он как бы разрезан по середине и установлен «ногами» друг против друга.

    Устройство магнитного пускателя

    Как правило, нижняя часть является неподвижной и надежно закреплена на корпусе. Верхняя часть является подвижной и установлена на пружинах, которые автоматически отключают пускатель, если на катушке отсутствует рабочее напряжение. Следует отметить, что выпускаются пускатели на различное рабочее напряжение, от 12 до 380 вольт. Катушки легко меняются, поэтому пускатели достаточно ремонтопригодные и наиболее слабым звеном является именно катушка. Кроме этого, у пускателя имеются также подвижные и неподвижные контакты, как силовые, так и управляющие. Подвижные контакты располагаются на подвижной части магнитного пускателя.

    Когда катушка обесточена, подвижные контакты находятся в разомкнутом состоянии за счет действия пружины. Когда нажимается кнопка «Пуск» на катушке появляется напряжение. В результате подвижная часть сердечника притягивается, а вместе с ней и подвижные контакты. Соединяясь с неподвижными контактами, образуется электрическая цепь, в результате чего на управляющем устройстве (электродвигателе) появляется рабочее напряжение: двигатель запускается. Это можно увидеть на картинке ниже.

    Так выглядит в разобранном виде

    Когда нажимается кнопка «Стоп», напряжение на катушке исчезает и верхняя, подвижная часть, за счет действия пружины, возвращается в исходное состояние. Контакты размыкаются, электрическая цепь пропадает, как и напряжение на электродвигателе: электрический двигатель останавливается. Электромагнит срабатывает, как от постоянного, так и от переменного напряжения, главное, чтобы катушка была рассчитана на рабочее напряжение.

    Бывают пускатели с нормально замкнутыми и нормально разомкнутыми контактами, при этом последние наиболее распространенные и наиболее востребованные.

    Катушка на 220 вольт: схемы подключения

    Для управления работой магнитного пускателя используется всего две кнопки – кнопка «Пуск» и кнопка «Стоп». Их исполнение может быть различным: в едином корпусе или в отдельных корпусах.

    Кнопки могут быть в одном корпусе или в разных

    У кнопок, выпускаемых в отдельных корпусах, имеется всего по 2 контакта, а у кнопок, выпускаемых в одном корпусе – по 2 пары контактов. Кроме контактов, может присутствовать клемма для подключения заземления, хотя современные кнопки выпускаются в защищенных корпусах, которые не проводят электрического тока. Выпускаются также кнопочные посты в металлическом корпусе для промышленных нужд, которые отличаются высокой ударопрочностью. Как правило, они заземляются.

    Подключение к сети 220 V

    Подключение магнитного пускателя к сети 220 V наиболее простое, поэтому имеет смысл начать ознакомление именно с этих схем, которых может быть несколько.

    Напряжение 220 V подается непосредственно на катушку магнитного пускателя, которые обозначены, как А1 и А2 и, которые располагаются в верхней части корпуса, что видно из фото.

    Подключение контактора с катушкой на 220 В

    Когда к этим контактам подключается обычная вилка на 220 V с проводом, устройство начнет работать после того, как вилка будет включена в розетку 220 V.

    С помощью силовых контактов допустимо включать/отключать электрическую цепь на любое напряжение, лишь бы оно не превышало допустимые параметры, которые указываются в паспорте изделия. Например, на контакты можно подать напряжение аккумулятора (12 V), с помощью которого будет управляться нагрузка с рабочим напряжением 12 V.

    Следует отметить, что неважно, на какие контакты подается управляющее однофазное напряжение, в виде «нуля» и «фазы». В данном случае, провода с контактов А1 и А2 можно поменять местами, что никак не повлияет на работу всего устройства.

    Вполне естественно, что подобная схема включения используется крайне редко, поскольку требует прямой подачи напряжения на катушку магнитного пускателя. При этом существует масса вариантов включения, с применением реле времени или сумеречного датчика, подключив к силовым контактам например, уличное освещение. Главное, чтобы «фаза» и «ноль» находились рядом.

    Использование кнопок «Пуск» и «Стоп»

    В основном, магнитные пускатели участвуют в процессе работы электродвигателей. Без наличия кнопок «Пуск» и «Стоп» такая работа связана с рядом трудностей. В первую очередь это связано с особенностями работы электродвигателей, которые зачастую находятся на значительном удалении. Кнопки включаются в цепь катушки последовательно, как на рисунке ниже.

    Схема включения магнитного пускателя с кнопками

    Подобный способ характеризуется тем, что магнитный пускатель окажется в рабочем состоянии до тех пор, пока будет нажата кнопка «Пуск», что очень неудобно. В связи с этим, в схему включаются дополнительные (БК) контакты магнитного пускателя, которые дублируют работу кнопки «Пуск». При включении магнитного пускателя они замыкаются, поэтому после отпускания кнопки «Пуск» цепь сохраняет свою работоспособность. Они обозначены на схеме, как NO (13) и NO (14).

    Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

    Отключить работающее оборудование можно только с помощью кнопки «Стоп», которая разрывает электрическую цепь питания магнитного пускателя и всей схемы. Если в схеме предусмотрена другая защита, например, тепловая, то в случае ее срабатывания схема также окажется не работоспособной.

    Питание для двигателя берется с контактов Т, а подается питания на контакты магнитного пускателя, под обозначением L.

    В этом видео подробно рассказывается и показывается, в какой последовательности подключаются все провода. В данном примере использована кнопка (кнопочный пост), выполненная в одном корпусе. В качестве нагрузки можно подключить измерительный прибор, обычную лампу накаливания, бытовой прибор и т.д., работающие от сети 220 V.

  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector