400volt.ru

Домашнему электрику
33 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема пуска электродвигателя

Схема пуска асинхронного двигателя

Всем привет. Тема сегодняшней статьи это схема пуска асинхронного двигателя. Как по мне, то эта схема самая простоя, какая только может быть в электротехнике. В этой статье я вам приготовил две схемы. На первом рисунке будет схема с предохранителем для защиты цепей управления, а на втором будет без предохранителя. Отличие этих схем в том, что предохранитель служит как дополнительный элемент для защиты цепи от короткого замыкания и так же как защита от самопроизвольного включения. К примеру, если вам нужно выполнить какие-то работы на электроприводе, то вы разбираете электрическую схему путём выключения автомата и дополнительно ещё нужно вынуть предохранитель и после этого уже можно приступать к работе.

И так рассмотрим первую схему. Для увеличения картинки нажмите на неё.

Рисунок 1. Пуск асинхронного электродвигателя с короткозамкнутым ротором.

QF – любой автоматический выключатель.

KM – электромагнитный пускатель или контактор. Также этими буквами на картинке я обозначил катушку пускателя и блок-контакт пускателя.

SB1 – это кнопка стоп

SB2 – кнопка пуск

KK – любое тепловое реле, а также контакт теплового реле.

КК – тепловое реле, контакты теплового реле.

М – асинхронный двигатель.

Теперь опишем сам процесс запуска двигателя.

Всю эту схему можно условно разделить на силовую – это то что находится слева, и на схему управления – это то что находиться справа. Для начала на всю электрическую цепь нужно подать напряжение путём включения автомата QF. И напряжение подаются на неподвижные контакты пускателя и на цепь управления. Далее нажимаем кнопку пуска SB2, при этом действии напряжение подается на катушку пускателя и он втягивается и подаётся также напряжение на обмотки статора и электродвигатель начинает вращаться. Одновременно с силовыми контактами на пускателе замыкаются и блок-контакты КМ через которые подаётся напряжение на катушку пускателя и кнопку SB2 можно отпустить. На этом процесс запуска уже окончен, как Вы сами видите всё очень легко и просто.

Рисунок 2. Пуск асинхронного электродвигателя. В цепи управления нет предохранителя. Для увеличения картинки нажмите на неё.

Для того чтобы прекратить работу электродвигателя, достаточно всего лишь нажать на кнопку SB1. Этим действием мы разрываем цепь управления и прекращается подача напряжения на катушку пускателя, и силовые контакты размыкаются и как следствие пропадает напряжение на обмотках статора, и он останавливается. Останавливать так же легко, как и запускать.

Вот в принципе и вся схема пуска асинхронного двигателя. Если статья вам чем то помогла, то поделитесь нею в соц. сетях, а так же подпишитесь на обновления блога.

Подключение электродвигателя

Время на чтение:

В промышленности наибольшее распространение получили трехфазные асинхронные двигатели. Такие привода обладают массой достоинств, как, например, жесткая характеристика. Это выражается в том, что при увеличении нагрузки и снижении оборотов крутящий момент резко возрастает. Схема подключения трехфазного асинхронного двигателя имеет свои особенности, которые необходимо учитывать при монтаже и ремонте устройств.

Условия для подключения электродвигателя

Основным условием для нормальной работы трехфазных двигателей является стабильность напряжения и тока в каждой из фаз электрической сети. Обрыв хотя бы одной фазы приведет к тому, что двигатель потеряет значительную часть мощности и при нагрузке на валу свыше 50 % нормативной остановится и выйдет из строя. Пуск на двух фазах возможен только при полном отсутствии нагрузки и только в то время, когда ротор сохраняет хотя бы небольшую угловую скорость.

Асинхронный двигатель

К сведению! В момент пуска асинхронный двигатель потребляет ток, в 3-5 раз превышающий номинальный до тех пор, пока ротор не наберет определенные обороты. Это явление исходит из принципа работы двигателя.

Таким образом, если в рабочем режиме ток двигателя позволяет использовать обычные автоматические выключатели, то для обеспечения нормального пуска коммутацию следует производить через мощный контактор (магнитный пускатель).

Магнитный пускатель

В отдельных случаях возможно подключение трехфазного двигателя в бытовую однофазную сеть. При этом сильно падают мощностные характеристики. Такая ситуация возникает очень часто, когда необходимо использовать промышленный привод в бытовых условиях. Используя специальную схему включения, обеспечивают нормальную работу мотора с учетом снижения мощности.

Как подготовить для подключения

Для правильного включения трехфазного двигателя необходимо помнить, что существует несколько схем соединения обмоток, среди которых:

  • «Звезда». Одни концы обмотки соединяют вместе, а другими подключаются к фазным проводам сети;
  • «Треугольник». Все три обмотки соединяются последовательно — конец каждой обмотки с началом следующей. Напряжение сети подается на точки соединения.

Обратите внимание! Для получения одинаковой мощности при соединении типа «звезда» требуется напряжение в √3 раз больше, чем при «треугольнике». Для двигателей, у которых допускается произвольное переключение обмоток, на шильдике обязательно указывается рабочее напряжение «220/380» или «127/220». Первое значение относится к соединению «треугольник», второе к «звезде».

В таких электродвигателях на клеммную колодку попарно в три ряда выведены начало и концы всех обмоток:

  • начало первой обмотки — конец второй;
  • начало второй — конец третьей;
  • начало третьей — конец первой.

Колодка двигателя, соединение «треугольник»

Для соединения «звезда» подключают один ряд из трех клемм двумя перемычками, а для соединения «треугольник» замыкают каждую пару тремя перемычками.

Как правильно подсоединить электродвигатель

От правильности включения обмоток электродвигателя зависит как ток потребления, так и направление вращения. Ток потребления вырастает, если двигатель, у которого на данное напряжение сети обмотки должны быть соединены «звездой», переключить на «треугольник». Такой режим работы является аварийным и приведет к выходу из строя.

Из теории трехфазного тока известно, что направление вращения электрической машины можно изменить, поменяв любые две фазы из трех местами. На этом основана схема реверсирования трехфазных асинхронных электродвигателей.

Важно! Схема реверсирования должна обеспечивать невозможность переключения фаз до момента остановки двигателя (прекращения подачи питания). В противном случае произойдет короткое замыкание сети.

Как подключить с 3 или 6 проводами

В большинстве случаев соединение двигателя с питающей сетью производится при помощи трех проводов. Даже если на клеммную колодку выведено шесть проводов, что соответствует трем парам обмотки, то путем соединения в нужную схему для подключения к питанию используется три провода.

Для мощных устройств учитывается, что асинхронный двигатель в момент запуска потребляет в несколько раз больший ток, поэтому используется сложная схема запуска, в которой в момент пуска обмотки подключаются «звездой», а после того как ротор наберет необходимые минимальные обороты, обмотки переключаются в «треугольник».

Шестипроводная схема включения

Важно! Для таких схем включения нужно подсоединять все шесть проводов обмоток электрической машины.

Схема подключения асинхронного электродвигателя

Асинхронные двигатели бывают не только трехфазные. Разработаны конструкции, которые могут подключаться в бытовую однофазную сеть. Схема электродвигателя для подключения к однофазной сети состоит из двух обмоток — рабочей и пусковой. Пусковая обмотка предназначена для формирования внутри статора вращающегося магнитного сдвига в момент пуска. Это необходимо для обеспечения начала вращения ротора. Фазный сдвиг осуществляется за счет включения пусковой обмотки через конденсатор.

Подключение однофазного двигателя

После того как ротор наберет обороты, пусковая обмотка уже не нужна. Маломощный однофазный привод будет работать нормально в таком режиме, но мощность двигателя возрастет, если оставить в работе пусковую обмотку, включенную через рабочий конденсатор.

Обратите внимание! Емкость рабочего конденсатора меньше, чем у пускового, так как нет необходимости сильного сдвига фазы. При высокой емкости через пусковую обмотку будет проходить большой ток, что приведет к ее перегреву.

В трехфазную электрическую сеть электромоторы включаются согласно их характеристикам и напряжению сети. Здесь главное — правильно выполнить необходимые соединения обмоток в соответствии с напряжением питания.

Нестандартная схема подключения трехфазного асинхронного электродвигателя применяется при использовании промышленных устройств в быту.

Подсоединение производят по нескольким вариантам:

  • с использованием частотного преобразователя;
  • через конденсатор.

Электронный частотный преобразователь (инвертор) позволяет не только сохранить мощность, но и улучшить целый ряд характеристик, недостижимых при включении по стандартной схеме. Это:

  1. Плавный пуск.
  2. Регулирование мощности.
  3. Регулирование оборотов.

Частотный преобразователь преобразует однофазное питание в полноценную трехфазную сеть, в которой можно менять частоту, амплитуду, выполнять стабилизацию тока и напряжения в фазных проводах.

Обратите внимание! Большой недостаток частотных инверторов — их высокая стоимость.

Схема с конденсатором разработана таким образом, чтобы получить на одной из трех обмоток сдвиг фазы, достаточный для работы двигателя. Конденсаторная электросхема работоспособна как для «треугольника», так и для «звезды». Включение электромотора через конденсатор является наиболее простым решением проблемы, но имеет несколько недостатков:

  • максимальная мощность двигателя снижается до 50 %;
  • емкость фазосдвигающего конденсатора сильно зависит от нагрузки на электродвигатель.

То есть при работе на холостом ходу емкость должна быть минимальна и достигать максимума на полной мощности двигателя. Наиболее высокий ток потребления у асинхронного двигателя в момент запуска.

Подключение в однофазную сеть

Обратите внимание! На практике используют усредненное значение емкости для наиболее ожидаемого режима работы, поскольку малое значение не даст необходимую мощность, а высокое приведет к перегреву обмоток.

Правильный расчет емкости учитывает напряжение сети, схему включения обмоток и мощность двигателя. Конденсаторная схема включения должна предусматривать запуск двигателя через отдельный пусковой конденсатор, емкость которого должна быть выше рабочей в 2-3 раза.

Принципиальный момент — реверс обеспечивается подключение конденсатора к любой другой обмотке.

Однолинейная схема подключения электродвигателя

В энергетике часто применяются однолинейные схемы, в которых все линии питания вне зависимости от количества проводов и фаз обозначаются одной линией. Однолинейный чертеж не перегружен мелкими деталями, и это упрощает его чтение.

Читать еще:  Схема подключения люминесцентной лампы

По однолинейной схеме удобно получать общее представление о работе и устройстве электроустановки. Трехфазные электродвигатели также обозначаются на однолинейных схемах. Важно учитывать при этом, что при разных способах коммутации фаз необходимо на чертеже указывать каждую фазу во избежание путаницы.

Чтобы подключать электрический двигатель к сети важно правильное определение назначения выводов обмоток и уже на основании имеющихся данных количество фаз, напряжение, мощность. Немаловажно выбрать наиболее подходящую схему включения.

Способы запуска электродвигателя постоянного тока

Хорошие тяговые характеристики электрических машин постоянного тока сделали их неотъемлемым элементом большинства устройств промышленной и бытовой механизации. Но вместе с тем возникает и существенная проблема значительных пусковых токов, в сравнении с асинхронными электродвигателями, работающих на переменном напряжении. Именно поэтому многие специалисты детально изучают способы запуска электродвигателя постоянного тока, прежде чем включить агрегат.

Прямой пуск

Из всех электродвигателей постоянного тока основная градация при выборе способа их запуска должна учитывать мощность устройства.

В целом выделяют три вида пуска:

  • малой мощности;
  • средней;
  • большой мощности.

Для прямого запуска подойдут только маломощные электродвигатели, которые потребляют до 1кВт электроэнергии в сети. При прямых запусках электродвигателя все напряжение сразу подается на рабочую обмотку. Это обуславливает возникновение максимального пускового тока из-за отсутствия естественной компенсации за счет ЭДС противодействия.

С физической точки зрения ситуация в обмотках ротора будет выглядеть следующим образом: в момент подачи напряжения сила тока в обмотках равна нулю, поэтому его значение будет определяться по формуле:

U – приложенная к выводам номинальное напряжение, Rобм – сопротивление катушки.

В этот момент величина токовой нагрузки электродвигателя постоянного тока является максимальной, он может отличаться от номинального значения в 1,5 – 2,5 раза. После этого протекание тока обуславливает генерацию ЭДС противодействия, которая компенсирует пусковую нагрузку до установки номинальной мощности, тогда ток станет:

В мощных устройствах сопротивление обмоток якоря может равняться 1 или 0,5 Ом, из-за чего ток при запуске электродвигателя может достигнуть 200 – 500 А, что в 10 – 50 раз будет превышать допустимые величины. Это, в свою очередь, может привести к термическому отпуску металла, деформации проводников, разрушению колец или щеток скользящего контакта. Поэтому двигатели постоянного тока средней и большой мощности должны вводиться в работу реостатным запуском или путем подачи заведомо пониженного напряжения, прямой пуск для них крайне опасен.

Пуск с помощью пускового реостата

В этом случае в цепь вводится переменное сопротивление, которое на начальном этапе обеспечивает снижение токовой нагрузки, пока вращение ротора не достигнет установленных оборотов. По мере стабилизации ампеража до стандартной величины в реостате уменьшается сопротивление от максимального значения до минимального.

Расчет электрической величины в этом случае будет производиться по формуле:

В лабораторных условиях уменьшение нагрузки может производиться вручную – посредством перемещения ползунка реостата. Однако в промышленности такой метод не получил широкого распространения, так как процесс не согласовывается с токовыми величинами. Поэтому применяется регулировка по току, по ЭДС или по времени, в первом случае задействуется измерение величины в обмотках возбуждения, во втором, на каждую ступень применяется выдержка времени.

Оба метода используются для запуска электродвигателей:

  • с последовательным;
  • с параллельным возбуждением;
  • с независимым возбуждением.

Запуск ДПТ с параллельным возбуждением

Такой запуск электродвигателя осуществляется посредством включения и обмотки возбуждения, и якорной к напряжению питания электросети, друг относительно друга они располагаются параллельно. То есть каждая из обмоток электродвигателя постоянного тока находятся под одинаковой разностью потенциалов. Этот метод запуска обеспечивает жесткий режим работы, используемый в станочном оборудовании. Токовая нагрузка во вспомогательной обмотке при запуске имеет сравнительно меньший ток, чем обмотки статора или ротора.

Для контроля пусковых характеристик сопротивления вводятся в обе цепи:

Рис 1. Запуск ДПТ с параллельным возбуждением

На начальном этапе вращения вала позиции реостата обеспечивают снижение нагрузки на электродвигатель, а затем их обратно выводят в положение нулевого сопротивления. При затяжных запусках выполняется автоматизация и комбинация нескольких ступеней пусковых реостатов или отдельных резисторов, пример такой схемы включения приведен на рисунке ниже:

Рис. 2. Ступенчатый пуск двигателя параллельного возбуждения

  • При подаче напряжения питания на электродвигатель ток, протекающий через рабочие обмотки и обмотку возбуждения, за счет магазина сопротивлений Rпуск1, Rпуск2, Rпуск3 нагрузка ограничивается до минимальной величины.
  • После достижения порогового значения минимума токовой величины происходит последовательное срабатывание реле K1, K2, K3.
  • В результате замыкания контактов реле K1.1 шунтируется первый резистор, рабочая характеристика в цепи питания электродвигателя скачкообразно повышается.
  • Но после снижения ниже установленного предела замыкаются контакты K2.2 и процесс повторяется снова, пока электрическая машина не достигнет номинальной частоты вращения.

Торможение электродвигателя постоянного тока может производиться в обратной последовательности за счет тех же резисторов.

Запуск ДПТ с последовательным возбуждением

На рисунке выше приведена принципиальная схема подключения электродвигателя с последовательным возбуждением. Ее отличительная особенность заключается в последовательном соединении катушки возбуждения Lвозбуждения и непосредственно мотора, переменное сопротивление Rякоря также вводится последовательно.

По цепи обеих катушек протекает одинаковая токовая величина, эта схема обладает хорошими параметрами запуска, поэтому ее часто используют в электрическом транспорте. Такой электродвигатель запрещено включать без усилия на валу, а регулирование частоты осуществляется в соответствии с нагрузкой.

Пуск ДПТ с независимым возбуждением

Подключение электродвигателя в цепь с независимым возбуждением производится путем ее запитки от отдельного источника.

Рис. 4. Запуск ДПТ с независимым возбуждением

На схеме приведен пример независимого подключения, здесь катушка Lвозбуждения и сопротивление в ее цепи Rвозбуждения получают питание отдельно от обмоток двигателя током независимого устройства. Для обмоток двигателя также включается регулировочный реостат Rякоря. При этом способе запуска машина постоянного тока не должна включаться без нагрузки или с минимальным усилием на валу, так как это приведет к нарастанию оборотов и последующей поломке.

Пуск путем изменения питающего напряжения

Одним из вариантов снижения токовой нагрузки при запуске электродвигателя является уменьшение питающего номинала посредством генератора постоянного напряжения или управляемого выпрямителя.

С физической точки зрения установка реостата обеспечивает тот же эффект, но с увеличением мощности электродвигателя возрастает и постоянная токовая нагрузка, существенно повышаются потери на реостатах. Поэтому снижение постоянного напряжения выполняет отдельное устройство на базе микросхемы, пример которого приведен на рисунке ниже:

Рис. 5. Схема пуска с изменением питающего напряжения

Пуск однофазного электродвигателя: инструкция для применения на практике

Главная страница » Пуск однофазного электродвигателя: инструкция для применения на практике

Характерная черта однофазных электродвигателей – эти аппараты не способны запускаться без сторонней поддержки (без наличия второстепенной обмотки). Как правило, однофазные моторы имеют только одну — основную обмотку статора. На практике используются разные способы, направленные на пуск однофазного электродвигателя и последующей работы.

Пуск однофазного двигателя вспомогательной фазой

Благодаря применяемым способам, удаётся вводить однофазные аппараты в нормальный режим эксплуатации. Рассмотрим существующие и часто применяемые варианты запуска однофазных электромоторов, дабы использовать при необходимости.

Структурное построение электрической основы двигателя, в данном случае, отмечается наличием на статорном кольце двух обмоток (основной и второстепенной), геометрически смещённых на 90°.

Когда происходит включение однофазного мотора, ток ( Т1 ) протекает по основной обмотке. Поскольку исполнение катушек статора разное, в контуре второстепенной обмотки циркулирует ток ( Т2 ), более слабый и заметно сдвинутый на ф/2.

Магнитные поля, генерируемые токами ( Т1) и ( Т2 ), сдвинуты по фазе относительно друг друга. Это смещение способствует образованию магнитного поля вращения, достаточно сильного, чтобы однофазный электродвигатель запустился в работу, правда, без учёта нагрузки.

Схема пуска однофазного мотора: 1 — второстепенная фаза; 2 — основная фаза; 3 — центробежная муфта сцепления; L1, L2 — линия питающего напряжения

Как только вал двигателя достигнет 80% номинального значения скорости вращения, вспомогательная фаза отключается центробежной муфтой сцепления или остаётся поддерживаемой в рабочем состоянии.

Таким образом, статор однофазного электродвигателя фактически представляет двухфазную организацию, как в режиме запуска, так и в рабочем режиме.

Соединения фазы допустимо инвертировать, получая таким способом изменение направления вращения. Поскольку значение начального крутящего момента низкое, рекомендуется поднимать этот параметр, увеличением смещения между полями катушек.

Пуск вспомогательной фазой с добавленным сопротивлением

Резистор, включенный с фазой вспомогательного толка последовательно, способствует увеличению импеданса этой фазы и увеличению разницы между токами ( Т1 ) и ( Т2 ). Рабочий режим однофазного электродвигателя после завершения пуска, в данном случае, ничем не отличается от первого схемного варианта.

Схема пуска однофазного электродвигателя с резисторами: 1 — основная обмотка; 2 — резистор 1; 3 — второстепенная обмотка; 4 — резистор 2; 5 — центробежная муфта сцепления; 6 — мотор

На основе этого решения возможна к применению также несколько иная схема, где сопротивление заменяется индуктивностью. Существенной разницы между этими двумя решениями не наблюдается. Однако посредством применения индуктивности значительно проще выстраивать смещение между токами Т1 и Т2 .

Пуск однофазного электродвигателя вспомогательной фазой с конденсатором

Конденсаторная схема считается наиболее распространенной для практики управления работой однофазных электромоторов. Отличительная особенность такой схемы – конденсатор, установленный на второстепенной обмотке.

Для постоянного конденсатора рабочее значение составляет около 8 мкФ с расчётом установки на однофазный электродвигатель до 200 Вт мощности. В режиме пуска однофазного электродвигателя больше указанной мощности, потребуется дополнительный конденсатор ёмкостью не менее 16 мкФ.

Читать еще:  Схема Подключения Электродвигателя

Включение дополнительной ёмкости в цепь обмотки электромотора потребуется только при пуске, после чего этот конденсатор выключается из схемы автоматически с помощью реле или ручным переключателем.

Результат работы схемы конденсаторного пуска

Поскольку конденсатор пусковой формирует фазовый сдвиг, противоположный одной индуктивности в режиме пуска и последующей работы, двигатель функционирует подобно двухфазному мотору с вращающимся полем.

Схема — пуск мотора с конденсатором: 1 — вспомогательная фаза; 2 — основная фаза; 3 — центробежная муфта сцепления; 4 — конденсатор; L1, L2 — линия питающего напряжения

Коэффициент крутящего момента и мощности здесь достигает высоких значений. Стартовый момент ( СМ ) примерно в три раза превышает номинальный крутящий момент ( КМ ) электродвигателя, а максимальный крутящий момент ( КМ max ) достигает удвоенного значения ( КМ ).

После выхода из режима пуска электромотора, рекомендуется поддерживать фазовый токовый сдвиг независимо от уменьшения общего значения ёмкости, поскольку импеданс статора увеличивается.

Конструкции электромоторов с расщеплёнными кольцами

Конструкции однофазных электродвигателей мощностью до 100 Вт нередко выполняются с полюсами статора, расщеплёнными медными кольцами. Каждый полюс такой конструкции имеет специальные выемки под короткозамкнутые проводящие кольца.

Схема на пуск однофазного электродвигателя с расщеплёнными полюсами: 1 — ротор; 2 — статор; 3 — магнитное поле статора; 4 — магнитное поле кольца; L1, L2 — линия питающего напряжения

Наведённый в теле проводящих колец электрический ток, вызывает искажение вращающегося магнитного поля. Благодаря такому эффекту осуществляется процесс пуска однофазного электродвигателя. Эффективность схем подобного рода невысокая, но вполне достаточная для электродвигателей до 100 Вт мощности.

Пуск электродвигателя на три фазы в однофазном режиме

Трехфазный электродвигатель (230/400 В) допустимо использовать на однофазном питании 220-230В, при условии оснащения стартовым конденсатором и дополнительным конденсатором для рабочего режима.

Следует отметить: такой подход снижает рабочую мощность электродвигателя (снижение порядка 0,7), пусковой момент и тепловой резерв. Как правило, под такую схему пуска подходят только маломощные 4-полюсные электродвигатели мощностью не более 4 кВт.

Видео пример подключения электрического мотора

Ниже представлен видеоролик, где популярно поясняется практически вся «подноготная» электрических моторов с однофазным построением обмоток статора. Кроме того, затрагиваются другие вопросы, тесно связанные с эксплуатацией электрических двигателей в целом. Рекомендуется к просмотру этот видеоматериал, как дополнение к материалу, представленному выше:

Обе инструкции, как текстовая, так и видео-инструкция, непременно помогут правильно запускать, эксплуатировать и обслуживать электрические однофазные (и другие) электромоторы.

Онлайн помощник домашнего мастера

Схема электродвигателя – способы подключения и запуска двигателя. Обзор типовых конфигураций и принципа работы

  • Электродвигатели

Работа внушительной части приборов, используемых в быту и на производстве, обеспечивается электродвигателями с различными спецификациями. Изучив технические характеристики, схемы соединения к электропитанию и подключения фаз двигателей, их можно использовать вторично в самодельных станках, насосных и вентиляционных системах.

Краткое содержимое статьи:

Типовые конфигурации и принципы действия электродвигателей

Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей. Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.

В асинхронных однофазных двигателях обмотка на роторе короткозамкнутая, по конструкции напоминающая колесо для белки. Замкнутые на кругах стержни входят в пазы сердечника, где при индукции тока создается поле уравновешивающее электромагнитное поле катушки. Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. В некоторых случаях, например на точильном станке двигатель можно запустить вручную, простым вращательным движением вала.

Можно также снабдить самодельный инструмент дополнительной стартовой обмоткой или частотным преобразователем, который обеспечит плавный запуск мотора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз

Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки.

Разница полюсов сдвигает ротор по кругу, достигая определенного угла, контакт с щетками перебрасывается на вторую рабочую обмотку, что обеспечивает непрерывное вращательное движение.

Подключение электромотора на самодельных устройствах

Перед использованием электродвигателя нужно навести справки о его типе и особенностях конструкции. Единственной доступной информацией при этом может быть лишь серийная маркировка на корпусе, остальное — мощность, тип, возможные системы управления двигателем – придется поискать в технических справочниках.

Проверка проводных выходов и корпуса на короткое замыкание — застрахует от аварий. Для этого, после визуального осмотра на предмет следов возгорания, при помощи мультиметра нужно сделать прозвон всех контактов и корпуса, затем проверить обмотки и выводы, и также конденсаторы при наличии.

Запуск двигателя коллекторного типа

Коллекторные двигатели компактны и работают на высоких оборотах. Ими оснащаются малогабаритные бытовые приборы, например, миксеры, мясорубки, кофемолки и стиральные машины, а также ручные инструменты — дрели, шуруповёрты, дисковые пилы и т. п.

На фото – схема подключения такого электродвигателя к питанию 220В через простой замыкающий выключатель. Кнопка в зажатом положении подает ток на обмотки статора и ротора. При двух разных обмотках на статоре можно сделать перемычку для переключения скоростей.

Способы подключения асинхронных двигателей

Различные модели асинхронных двигателей используются в бытовых кондиционерах, в насосных системах и аппаратуре промышленного назначения. Они, как правило, оснащаются преобразователями частоты, которые в зависимости от предназначения, выполняют постепенный набор оборотов при включении, или плавное, не ступенчатое, переключение скоростей.

Схема подключения обычно дается прямо на корпусе, где маркируются выводящие провода пусковой и рабочей обмотки. В других случаях их можно определить при помощи замеров сопротивления. Величина в Омах в двух вариантах последовательного соединения должна в сумме быть равной показателю сопротивления пары обмоток ротора и статора.

Рабочая обмотка может отличаться и визуальной толщиной в сечении. Она подключается к конденсатору, а вывод от статора напрямую к 220В.

Конденсаторы могут быть установлены по схеме подключения к статорной обмотке, для обеспечения пуска электродвигателя, или в качестве рабочего устройства, подсоединенного к основной обмотке. Возможен и комбинированный вариант с двумя конденсаторами.

Емкость теплообменника зависит от мощности мотора в расчете 7мкФ на 100Вт. Чрезмерный нагрев корпуса после запуска свидетельствует о недостаточной емкости подключенных конденсаторов. Если наблюдается спад мощности и замедление оборотов, следует уменьшить емкость.

Трехфазными двигателями, отличающимися большой мощностью и возможностью автоматического старта оборудуют деревообрабатывающие и токарные станки. К трехфазной сети питания такие моторы подсоединяются в двух конфигурациях: треугольной или в виде звезды.

Для подключения к сети с одной фазой необходимо наличие переходного конденсатора, но в этом случае будут потери мощности и скорости оборотов двигателя.

Частотные преобразователи – важный элемент системы управления двигателем, могут быть заменены симисторами для плавного пуска, которые подключаются по трехфазной схеме. Это позволяет снизить расход электроэнергии и износ мотора, предотвращает перегрев и дает ряд дополнительных возможностей для подключения автоматики.

Запуск электродвигателя по схеме «звезда-треугольник» номиналом 30 кВт

Если Вы нашли ошибку на нашем сайте, выделите текст и нажмите Ctrl+Enter

Запуск асинхронного электродвигателя по схеме «Звезда-треугольник» номиналом 30 кВт с использованием реле времени Finder 80.82

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.


Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:


где Uл — напряжение между двумя фазами, Uф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»

Читать еще:  Перекрестный выключатель Legrand, ABB, Schneider

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:


где Iл — линейный ток, Iф — фазный ток

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:


где U — фазное напряжение обмотки статора, r1 — активное сопротивление фазы обмотки статора, r2 — приведенное значение активного сопротивления фазы обмотки ротора,
x1 — индуктивное сопротивление фазы обмотки статора, x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,
m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.


Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.


Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.


Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

    Список используемой литературы:
  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

Схемы подключения трехфазных электродвигателей

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector