400volt.ru

Домашнему электрику
144 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения реверсивного пускателя в трехфазной сети

Схемы Подключения Пускателей С Реверсом

Созданная модель предусматривает наличие одного рабочего приспособления.


Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря. Для управления же пуском двигателя, путем замыкания контактных групп пускателя, служит кнопка или слаботочная контактная группа с катушкой на определенное 12, 24, 36 или вольт напряжение, а иногда — и то и другое.
Как подключить магнитный пускатель, реверсивная схема

Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов — нормально открытые разомкнутые, замыкающие, НО, NO и нормально закрытые замкнутые, размыкающие, НЗ, NC Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя.

Не путать с блокировкой в реверсивных схемах, см. Принцип подключения однофазной сети аналогичен рассматриваемому варианту.

Пусковая кнопка возвращается в исходное положение, а КМ1 удерживает себя своим контактом.

На катушку пускателя — контакты A1 или A2 — заводится одна из фаз чаще всего фаза С как менее нагруженная , второй контакт подсоединяется к нулевому проводу. Это и оперативное управление трехфазными асинхронными двигателями различных станков и насосов, это и управление вентиляцией, и даже управление запорной арматурой, вплоть до замков и вентилей отопительных систем.

Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Принцип работы реверсивных магнитных пускателей такой же как и не реверсивных.

Схема реверса на двух пускателях.

Схемы включения магнитных пускателей

Оба эти контакта находятся в верхней части корпуса смотрите фото. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели автоматы. Контакторы имеют мощные дугогасительные камеры.

А также применяются дополнительно блокировки: электрическая и механическая, для того что бы избежать возникновения короткого замыкания или аварийной ситуации при одновременном включении двух пускателей. Произойдет реверсирование электродвигателя.

На малые токи — до 10 А — выпускают исключительно пускатели. Принцип работы реверсивных магнитных пускателей такой же как и не реверсивных.

Также обратите внимание, что провод от кнопки включения вправо или влево подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя.

И поскольку контакторы запускаются лишь поочередно, то и фазы питания можно переключать поочередно, чтобы выполнялась главная функция реверсивного пускателя — изменение направления вращения электродвигателя. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Кроме того, есть некоторое отличие в назначении. По схеме понятно, что если включатся два пускателя одновременно, то произойдет короткое замыкание.

Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до В постоянного тока и до В переменного.
Схемы управления магнитным пускателем

Исходное положение элементов

Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов КМ1.

Управление реверсивным пуском.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный бытовой автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Двигатель останавливается. В первую очередь они отличаются степенью защиты.

Давайте рассмотрим принцип ее работы. Пишите в комментариях! Подгорел контакт. Реверсивные и нереверсивные пускатели Устройства бывают различных видов и выполняют все поставленные задачи.

При этом сердечник под действием пружин возвращается в нормальное состояние, электродвигатель отключается. Каждый контакт расположен в дугогасительной камере.

Устройство и принцип работы Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы. При превышении допустимого тока нагрузки нихром нагревает пластину, и та, изгибаясь, воздействует на рычажок, отключающий встроенный в тепловое реле контакт. Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. В этом случае схема выглядит как на рисунке ниже. Некоторые модели реверсивных пускателей для обеспечения этой же функции имеют механическую защиту.

Электродвигатель подключается к цепи по следующей цепочке: автоматический трехфазный выключатель; силовые клеммы пускателя КМ ; тепловое реле ТР. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Например если катушка магнитного пускателя на вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.
схема подключения двигателя по реверсивной схеме.

Устройство магнитного пускателя

Тоже ничего сложного.

Реверсивная схема По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами.

Схема подключения реверсивного магнитного пускателя является ядром управления, так как много электрооборудования работает на реверсе , и именно этот аппарат изменяет направление вращения двигателя. Сравнение магнитного и гибридного пускателя: Post navigation Реверсивная и нереверсивная схема подключения пускателя Магнитный пускатель — это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя электродвигатели, электрические ТЭНы, электрокотлы и так далее.

Например приставка ПКИ. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до В постоянного тока и до В переменного. При схеме включения приведенной выше следует учесть напряжение номинальное катушки.

В схеме реализована защита от короткого замыкания, это контакты КМ1. В прорези нижней части магнитопровода устанавливается катушка.

Существуют также катушки на 12, 24, 36, 42, вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение. Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2. Обсудить Редактировать статью Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен. Подключение пускателя с катушкой В к сети Собственно, вариантов подключения контакторов много, опишем несколько.

Подгорел контакт. Магнитный пускатель представляет собой комбинированное низковольтное электромеханическое устройство, предназначенное для пуска трехфазных как правило электродвигателей, для обеспечения их непрерывной работы, для безопасного отключения питания, а иногда и для защиты цепей электродвигателя и других подключенных цепей.
Схема управления двигателем с двух и трех мест

Реверсивная и нереверсивная схема подключения пускателя

Магнитный пускатель – это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя (электродвигатели, электрические ТЭНы, электрокотлы и так далее). Перед тем как разбираться в теме статьи – схема подключения пускателя, необходимо понять принцип его работы.

В основном магнитные пускатели используются сегодня для управления двигателей асинхронного типа. С его помощью производится «пуск», «стоп» и реверс мотора. Но есть еще один момент, который не надо упускать из вида. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели (автоматы). Для того чтобы это понять, необходимо привести пример.

Если в распределительном щите установлен автомат номиналом 10 ампер, то его пропускная мощность рассчитывается по закону Ома: P=UI=220х10=2200 Вт или 2,2 кВт. По сути, такой автомат может выдержать освещение, в котором присутствует двадцать две лампочки по 100 ватт каждая. Чтобы увеличить мощность потребления электрической цепочки, к примеру, в два раза, не стоит разделять ее на участки, куда придется устанавливать несколько автоматических выключателей и делать монтаж отдельной электропроводки. Достаточно установить магнитный пускатель, к примеру, третьей величины.

У такого прибора контакты рассчитаны на 40 ампер. Отсюда и возможность выдерживать потребляемую мощность: 40х220=8800 Вт или 8,8 кВт. То есть, соединив последовательно 88 лампочек мощностью по 100 Вт, можно одним щелчком включать и отключать их одновременно.

В основе конструкции магнитного пускателя лежит электромагнитная катушка. Так вот в момент пуска (включения) прибор потребляет 200 ватт. В рабочем состоянии мощность не превышает 25 Вт. Даже если рассчитать силу тока в момент пуска, то на будет незначительных параметров: 200 Вт/220 В = 0,9 ампер. То есть, этой величины достаточно, чтобы прибор включил основную электрическую цепь. Получается так, что даже самый небольшой магнитный пускатель может легко управлять автоматом. При этом на контактах последнего всегда будет сниженный ток, что не приведет к их подгоранию. А, значит, автоматический выключатель будет отключать своими контактами достаточно большие мощности.

Внимание! Существует несколько видов магнитных пускателей, у которых катушка рассчитана на разное напряжение. Это 220 вольт, 380 и 36.

Тепловое реле в пускателе

Это обязательная составляющая часть пускателя, которая будет отключать сеть от перегрузов и от неполнофазного режима (когда отсутствует одна из трех фаз). Причины последнего – большое разнообразие.

  • От вибрации открутился соединительный винтик.
  • Подгорел контакт.
  • Перегорела вставка (плавкая) на фазе.
  • Некачественный неплотный контакт.

Обе причины создают увеличение силы тока, который проходит через тепловое реле. При этом в самом приборе начинают нагреваться биметаллические пластины, которые под действием тепла начинают выгибаться, размыкая контакт в самом реле. Последний отключает пускатель, а тот в свою очередь, к примеру, электродвигатель.

Схемы подключения

Итак, теперь переходим к основной теме статьи – схемы подключения пускателя. Их две:

  1. Реверсивная.
  2. Нереверсивная.

Как подключить нереверсивную схему. Она является стандартной, когда подключаемый к сети электродвигатель будет вращаться в одну сторону.

На схеме четко видно, что запуск мотора производится кнопкой «Пуск», расположенной на магнитном пускателе КМ 1. Чтобы не удерживать данную кнопку, ее шунтируют с контактами аппарата. То есть, при нажатии кнопки «Пуск» она замыкает контакты пускателя, через которые ток будет подаваться на электромагнитную катушку прибора.

Отключение производится кнопкой «Стоп». На схеме пускателя она обозначена буквой «С». Эта кнопка просто размыкает контакты. При этом сердечник под действием пружин возвращается в нормальное состояние, электродвигатель отключается.

В принципе, точно также работает и тепловое реле, обозначенное на схеме подключения пускателя буквой «Р».

Реверсивная схема

По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Конечно, она более сложная, потому что в нее добавляется еще одна кнопка – реверс, и еще один магнитный пускатель.

Сам по себе реверс – это переподключение двух фаз местами. Но тут необходимо соблюсти один момент – нужно, чтобы второй пускатель в это время не включался. То есть, необходима его блокировка. По схеме понятно, что если включатся два пускателя одновременно, то произойдет короткое замыкание.

Читать еще:  Трехфазный счетчик электроэнергии: устройство, принцип работы, установка, подключение

Вот динамика работы схемы:

  • включается автомат QF;
  • нажимается кнопка «Пуск 1»;
  • напряжение подается на электродвигатель, который начинает работать.

При реверсе происходит следующее:

  • нажимается кнопка «Стоп 1», с помощью которой производится отключение электродвигателя от питания;
  • затем необходимо нажать на кнопку «Пуск 2», которая подает напряжение на КМ 2;
  • начинает работать двигатель только его вращение меняется на противоположное.

Обе рассмотренные схемы подключения относятся к трехфазным потребителям. Двухфазные системы по принципу работы ничем от них не отличаются. Правда, схема подключения здесь проще. Вот эта нереверсивная схема:

Технические характеристики

Не будем здесь рассматривать все параметры прибора, потому что выбор всегда делается по величине пускателя, которая характеризуется номинальным током нагрузки, действующей на контакты прибора. Существует семь величин пускателя, каждой из которых соответствует допустимая токовая нагрузка. На фотографии ниже обозначены эти самые величины, и в каких областях такие магнитные пускатели применяются.

Необходимо отметить, что небольшие погрешности в параметрах допустимы. Но в некоторых случаях надо учитывать, в каком диапазоне срабатывает тепловое реле. Если величины пускателей имеют завышенную нагрузку, а реле заниженный минимальный показатель теплового отключения, то может быть несоответствие заданной мощности электрической цепочки или потребителя.

Схема подключения магнитного пускателя

Магнитные пускатели, а также контакторы, предназначаются для управления работой электродвигателей и других электрических устройств. Они рассчитаны на частое включение/выключение подобных устройств. Могут работать, как в однофазных, так и в 3-х фазных цепях переменного тока, а также в цепях постоянного тока.

Чем отличаются пускатели от контакторов

Предназначение этих видов устройств практически одинаковое, но разница все же имеется. Принцип работы этих устройств также одинаковый, поскольку их работа основана на принципе работы электрического магнита. Рассчитаны они для работы в цепях постоянного тока, с напряжением до 440V, а также в цепях переменного тока с напряжением до 600 V. Те и другие имеют:

  • Рабочие (силовые) контакты, для управления работой нагрузки.
  • Вспомогательные (управляющие) контакты, обеспечивающие функционирование сигнальных устройств.

Казалось бы, разницы нет, но она есть и достаточно существенная. Пускатели выпускаются для работы на малые токи до 10А, а вот контакторы предназначены для коммутации электрических цепей с большими токами, которые составляют сотни ампер. В связи с этим, их конструкция может отличаться из-за наличия дугогасительных камер.

Внешний вид не всегда так сильно отличается, но бывает и так

Кроме этого, пускатели выпускаются в корпусах из прочной пластмассы, а контакторы корпусов не имеют (в большинстве случаев), поэтому их установка требует защищенных мест, вроде боксов, вход в которые не возможен для посторонних лиц, кроме обслуживающего персонала. Кроме этого, контакторы должны быть защищены от влаги, пыли и грязи.

Пускатели в основном предназначаются для включения/отключения асинхронных 3-х фазных электродвигателей. В связи с этим данные устройства оборудованы 3 парами рабочих контактов, а также вспомогательными контактами, которые обеспечивают подачу питания на пускатель в рабочем режиме. Подобные функциональные возможности достаточно универсальные, поэтому пускатели используются для управления работой различных устройств, находящихся на значительном удалении.

Поскольку их принцип работы практически не отличается, то зачастую пускатели называют «малогабаритными контакторами». В основном это можно встретить в прайс-листах, хотя ранее четко разграничивались контакторы и пускатели. Как правило, даже электрики и те больше работали с пускателями.

Принцип работы и устройство

Очень важно понять, на чем основан принцип работы пускателей, а также как они устроены, чтобы лучше понимать схему подключения.

Основу конструкции представляет электрический магнит, который, в свою очередь, состоит из подвижной и неподвижной части. Магнитопровод отличается «Ш» — образной формой, при этом он как бы разрезан по середине и установлен «ногами» друг против друга.

Устройство магнитного пускателя

Как правило, нижняя часть является неподвижной и надежно закреплена на корпусе. Верхняя часть является подвижной и установлена на пружинах, которые автоматически отключают пускатель, если на катушке отсутствует рабочее напряжение. Следует отметить, что выпускаются пускатели на различное рабочее напряжение, от 12 до 380 вольт. Катушки легко меняются, поэтому пускатели достаточно ремонтопригодные и наиболее слабым звеном является именно катушка. Кроме этого, у пускателя имеются также подвижные и неподвижные контакты, как силовые, так и управляющие. Подвижные контакты располагаются на подвижной части магнитного пускателя.

Когда катушка обесточена, подвижные контакты находятся в разомкнутом состоянии за счет действия пружины. Когда нажимается кнопка «Пуск» на катушке появляется напряжение. В результате подвижная часть сердечника притягивается, а вместе с ней и подвижные контакты. Соединяясь с неподвижными контактами, образуется электрическая цепь, в результате чего на управляющем устройстве (электродвигателе) появляется рабочее напряжение: двигатель запускается. Это можно увидеть на картинке ниже.

Так выглядит в разобранном виде

Когда нажимается кнопка «Стоп», напряжение на катушке исчезает и верхняя, подвижная часть, за счет действия пружины, возвращается в исходное состояние. Контакты размыкаются, электрическая цепь пропадает, как и напряжение на электродвигателе: электрический двигатель останавливается. Электромагнит срабатывает, как от постоянного, так и от переменного напряжения, главное, чтобы катушка была рассчитана на рабочее напряжение.

Бывают пускатели с нормально замкнутыми и нормально разомкнутыми контактами, при этом последние наиболее распространенные и наиболее востребованные.

Катушка на 220 вольт: схемы подключения

Для управления работой магнитного пускателя используется всего две кнопки – кнопка «Пуск» и кнопка «Стоп». Их исполнение может быть различным: в едином корпусе или в отдельных корпусах.

Кнопки могут быть в одном корпусе или в разных

У кнопок, выпускаемых в отдельных корпусах, имеется всего по 2 контакта, а у кнопок, выпускаемых в одном корпусе – по 2 пары контактов. Кроме контактов, может присутствовать клемма для подключения заземления, хотя современные кнопки выпускаются в защищенных корпусах, которые не проводят электрического тока. Выпускаются также кнопочные посты в металлическом корпусе для промышленных нужд, которые отличаются высокой ударопрочностью. Как правило, они заземляются.

Подключение к сети 220 V

Подключение магнитного пускателя к сети 220 V наиболее простое, поэтому имеет смысл начать ознакомление именно с этих схем, которых может быть несколько.

Напряжение 220 V подается непосредственно на катушку магнитного пускателя, которые обозначены, как А1 и А2 и, которые располагаются в верхней части корпуса, что видно из фото.

Подключение контактора с катушкой на 220 В

Когда к этим контактам подключается обычная вилка на 220 V с проводом, устройство начнет работать после того, как вилка будет включена в розетку 220 V.

С помощью силовых контактов допустимо включать/отключать электрическую цепь на любое напряжение, лишь бы оно не превышало допустимые параметры, которые указываются в паспорте изделия. Например, на контакты можно подать напряжение аккумулятора (12 V), с помощью которого будет управляться нагрузка с рабочим напряжением 12 V.

Следует отметить, что неважно, на какие контакты подается управляющее однофазное напряжение, в виде «нуля» и «фазы». В данном случае, провода с контактов А1 и А2 можно поменять местами, что никак не повлияет на работу всего устройства.

Вполне естественно, что подобная схема включения используется крайне редко, поскольку требует прямой подачи напряжения на катушку магнитного пускателя. При этом существует масса вариантов включения, с применением реле времени или сумеречного датчика, подключив к силовым контактам например, уличное освещение. Главное, чтобы «фаза» и «ноль» находились рядом.

Использование кнопок «Пуск» и «Стоп»

В основном, магнитные пускатели участвуют в процессе работы электродвигателей. Без наличия кнопок «Пуск» и «Стоп» такая работа связана с рядом трудностей. В первую очередь это связано с особенностями работы электродвигателей, которые зачастую находятся на значительном удалении. Кнопки включаются в цепь катушки последовательно, как на рисунке ниже.

Схема включения магнитного пускателя с кнопками

Подобный способ характеризуется тем, что магнитный пускатель окажется в рабочем состоянии до тех пор, пока будет нажата кнопка «Пуск», что очень неудобно. В связи с этим, в схему включаются дополнительные (БК) контакты магнитного пускателя, которые дублируют работу кнопки «Пуск». При включении магнитного пускателя они замыкаются, поэтому после отпускания кнопки «Пуск» цепь сохраняет свою работоспособность. Они обозначены на схеме, как NO (13) и NO (14).

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

Отключить работающее оборудование можно только с помощью кнопки «Стоп», которая разрывает электрическую цепь питания магнитного пускателя и всей схемы. Если в схеме предусмотрена другая защита, например, тепловая, то в случае ее срабатывания схема также окажется не работоспособной.

Питание для двигателя берется с контактов Т, а подается питания на контакты магнитного пускателя, под обозначением L.

В этом видео подробно рассказывается и показывается, в какой последовательности подключаются все провода. В данном примере использована кнопка (кнопочный пост), выполненная в одном корпусе. В качестве нагрузки можно подключить измерительный прибор, обычную лампу накаливания, бытовой прибор и т.д., работающие от сети 220 V.

Схема реверса трехфазного двигателя

Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.

  1. Общая схема реверса электродвигателей
  2. Схема реверса трехфазного двигателя и кнопочного поста
  3. Схема реверса трехфазного двигателя в однофазной сети

Общая схема реверса электродвигателей

В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.

Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.

Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.

Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.

Читать еще:  Схема Подключения Узо В Однофазной Сети

На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.

Схема реверса трехфазного двигателя и кнопочного поста

В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.

Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.

Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).

Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.

В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.

Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.

По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.

Схема реверса трехфазного двигателя в однофазной сети

Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.

Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.

Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.

Реверс электродвигателя – схема

Схема реверса электродвигателя с магнитным пускателем

Схема реверсивного пуска двигателя

Подключение трехфазного двигателя к трехфазной сети

Подключение трехфазного двигателя к однофазной сети

Как подключить трехфазный двигатель к сети 220 вольт

Реверсивная схема подключения магнитного пускателя

Приветствую вас, уважаемые читатели сайта elektrik-sam.info!

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД ;

2) нормально-разомкнутой кнопки НАЗАД ;

3) нормально-замкнутой кнопки СТОП .

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение , его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД . Цепь питания обмотки магнитного пускателя КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД .

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя.

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД , она возвращается в исходное нормально-разомкнутое состояние. Теперь питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП . Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП . Она возвращается в исходное, нормально-замкнутое положение. Но поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД .

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД . Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД . Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП . Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП , схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В, схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Реверсивный пускатель: схема подключения

Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад. По сути, реверс обеспечивается наличием еще одной контактной группы на пускателе. Но ее нужно правильно подключить. Например, имеются три фазы А, В и С, которые подключены к контактной колодке электромотора. При этом вал вращается по часовой стрелке. Чтобы заставить вращаться его в обратную сторону, достаточно поменять любые две фазы местами. Например, подключить в таком порядке – В, А, С.

Особенности реверсивных пускателей

Используются такие схемы подключения в конструкциях лифтов, подъемных кранов, сверлильных станков. Если сильно не вдаваться в детали, то может показаться, что схема включения мотора с использованием реверса сложнее. Но на деле оказывается, что сложного нет ничего – в конструкцию добавилась еще одна силовая часть и управление.

Стоимость таких устройств немного выше за счет использования большего количества элементов. По сути, это два электромагнитных пускателя, объединенных в один корпус. Принцип работы у схемы специфический, потребуется внимательно рассмотреть все нюансы.

Исходное положение элементов

Схема реверсивного магнитного пускателя в изначальном состоянии разомкнута — напряжение поступает только на верхние контакты и «дежурит» до того момента, пока не начнет работать система управления. Фазы располагаются в таком виде:

  1. От фазы «А» производится питание цепи управления.
  2. Провод от фазы «А» поступает на кнопку остановки.
  3. Фаза также поступает на контакты кнопок SB2 и SB3.
  4. Обязательно осуществляется защита цепей – силовых и управления.

В таком виде схема готова к началу работы, остается только нажать на кнопку «Влево» или «Вправо», чтобы запустить электродвигатель. И нужно изучить более подробно процессы, протекающие в схеме реверсивного пускателя с кнопками управления при вращении ротора двигателя.

Ротор вращается против часовой стрелки

Как только происходит нажатие на кнопку SB2, через нормально-замкнутую группу контактов КМ2.2 проходит фаза «А» на катушку пускателя. При этом происходит срабатывание обмотки, контакты, которые были разомкнутые, замыкаются. А замкнутые размыкаются.

Как только произойдет замыкание контактов КМ1.1, магнитный пускатель переводится в режим самоподхвата.

Следовательно, как только происходит замыкание группы силовых контактов, все три фазы подаются на обмотки электрического двигателя. И ротор начинает разгоняться, двигаясь в направлении против часовой стрелки. Нормально-замкнутая группа контактов КМ1.2, которая находится в цепи, питающей катушку пускателя КМ2, размыкается и противодействует подаче напряжения на катушку КМ2 (КМ1 при этом работает). В народе такую схему называют «защитой от дурака».

Читать еще:  Однофазное подключение трехфазного двигателя к электрической сети

Двигатель вращается по часовой стрелке

Как было сказано ранее, для вращения мотора в противоположную сторону, достаточно просто поменять местами две фазы. Именно это и делает в схеме реверсивного пускателя двигателя элемент, обозначенный КМ2. Но, прежде чем изменить направление движения, необходимо остановить мотор. Для этого используется кнопка «Стоп». Обычно она имеет красный цвет. Как только оператор нажмет на кнопку, произойдет разрыв цепи питания катушки магнитного пускателя КМ1.

При этом пружина воздействует на контакты и возвращает их в исходное состояние. Электрический двигатель обесточивается, на обмотках пропадает напряжение и ротор останавливается. При нажатии на кнопку SB3 происходит передача фазы «А» по нормально-замкнутому контакту КМ1.2 на катушку электромагнита КМ2. Пускатель выходит в режим самоподхвата при помощи силового контакта КМ2.1.

В них переброшены две фазы – например, «А» и «В». Группа контактов КМ2.2, которая находится в цепи питания магнитного пускателя КМ1, размыкается и не позволяет включиться в работу КМ1. Магнитный пускатель КМ2 в это время работает.

Схема силовой цепи

В общем, схема подключения реверсивного пускателя в трехфазной сети может быть реализована несколькими способами. Самое главное – можно использовать два пускателя, если нет возможности поставить один.

Важно правильно произвести переброс фаз, чтобы осуществить реверс. Распределяются фазы в магнитном пускателе КМ1 таким образом:

  1. «А» подается к обмотке «1».
  2. «В» поступает на обмотку мотора «2»
  3. «С» подается на обмотку «3».

При этом вращение ротора происходит против часовой стрелки. На пускателе КМ2 фазы распределены таким образом:

  1. «А» на обмотку «1».
  2. «С» поступает к обмотке «2».
  3. «В» подается на обмотку мотора «3».

Следовательно, отличие только в том, что поменялись местами две фазы – «В» и «С». Фаза под литерой «А» остается все также на первом контакте. Но ротор будет вращаться в противоположную сторону – в обмотках происходит сдвиг фаз.

Практическая схема реверсивного пускателя

Схема подключения реверсивного пускателя трехфазного типа производится таким образом:

  1. Первой подсоединяется к контактам фаза «А». Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2.
  2. Выходы обоих пускателей соединяются параллельно при помощи перемычки.
  3. Фаза с обозначением «В» соединяется со средним контактом КМ1, а также при помощи перемычки с крайним правым КМ2.
  4. Фаза «С» соединяется с крайним правым контактом на КМ1 и средним на КМ2.

Именно таким образом происходит смена направления движения ротора.

Схема подключения реверсивного пускателя реализуется только лишь при помощи соединения силовых контактов и смены их порядка. Но обязательно в конструкции привода должна иметься защита от случайного включения двух магнитных пускателей одновременно.

Как осуществляется защита

Обязательно перед тем как произвести смену направления движения ротора, необходимо полностью застраховаться от различных ошибок. Допустим, конструкция не содержит в себе элементов, которые позволяют защитить схему. Тогда при вращении мотора против часовой стрелки магнитный пускатель КМ1 находится в рабочем состоянии. Все фазы поступают к соответствующим обмоткам мотора.

Если сразу же произвести включение магнитного пускателя КМ2, то фазы «В» и «С» окажутся замкнутыми. Следовательно, произойдет обычное межфазное замыкание, которое может привести к пожару или выходу из строя различных компонентов. Для предотвращения такого явления используются контакты нормально-замкнутого типа.

Они монтируются непосредственно в цепи питания катушек пускателей. Именно с их помощью появляется возможность включения только одного магнитного пускателя и полностью исключается вероятность включения в цепь питания одного пускателя до полного отключения второго. В противном случае постоянно будут выбивать автоматы защиты, оператору придется их включать.

Заключение

«Защита от дурака» имеется в любой электрической схеме. Если в схеме реверсивного пускателя не использовать такого типа защиту, то при эксплуатации возникнет множество проблем. Операторы, которые включают электропривод, обычно не имеют познаний в схемотехнике. Поэтому, чтобы исключить возможность ошибки, используется схема, которая не позволяет ввести в работу одновременно два магнитных пускателя.

Желательно применять в схемах лампы, которые будут показывать направление вращения двигателя. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Можно использовать лампы на 220 Вольт или, если имеется отдельный источник питания, на 12 Вольт. Целесообразность использования таких типов конструкций сомнительна, так как намного проще применить в качестве источника напряжения одну из рабочих фаз. Обычно так и поступают, в редких случаях применяются дополнительные источники питания.

Желательно цепи управления питать от низковольтной цепи, но при этом возникает необходимость в источнике постоянного напряжения – придется применять специальные устройства. Для этого достаточно установить трансформатор и простейший выпрямитель, либо же использовать готовый блок питания. Обязательно нужно применить схему защиты цепи питания низковольтной части.

Реверсивная схема подключения магнитного пускателя

Электродвигатели используются в подавляющем большинстве для приводных механизмов и самостоятельных агрегатов. Когда требуется изменение направления вращения его вала, для пуска применяют реверсивный пускатель, схема подключения которого является объектом изучения профессионалов и простых обывателей.

Как устроен и для чего нужен пускатель?

Как можно логически определить из названия, это устройство предназначено для пуска электродвигателей различных приводных механизмов и техники. Это специфическое оборудование, которое необходимо для коммутации силовых целей с большими нагрузками, как на постоянном, так и на переменном токе. Пускатель обладает более широким функционалом, нежели базовый контактор и кроме обеспечения частых пусков и остановок, может выступать в роли защитного барьера при перегрузках. Кроме этого, реверсивный и нереверсивный пускатели, например, серии ПМЛ, нашел свое применение при организации дистанционных схем управления, пуска насосных, вентиляционных, крановых агрегатов, кондиционеров и т.д.

Любой магнитный пускатель состоит из следующих основных частей:

  • Электромагнитная часть. Она состоит из катушки и разъединенных магнитопроводов – неподвижного сердечника и подвижного якоря,
  • Блок главных контактов. Они нужны для замыкания/размыкания силовых мощных нагрузок. С учетом параметров пускателя, он может иметь до 5 пар контактов. Одна их половина расположена на траверсе якоря, а другая – на верхней части корпуса,
  • Блокирующие контакты. Они используются при коммутации управляющих цепей схемы, например, когда включение/остановка происходит пусковыми кнопками. Происходит блокировка основных контактов, а значит, устраняется необходимость удерживания кнопки управления,
  • Возвратный механизм. По сути, это просто пружина, которая при размыкании контактов возвращает якорь в исходное положение, обеспечивая необходимый зазор между парами.

Разница между прямым и реверсивным пускателями

Главное отличие нереверсивного и реверсивного пусковых устройств, состоит в схеме подключения. Также меняется комплектация. Контактор прямого типа является одиночным, тогда как реверсивный – блочным, состоящим из двух прямых, объединенных в одном корпусе. Визуальные отличия этих двух реле можно видеть на сравнении моделей ПМЛ-1100 (слева) и ПМЛ-1500 (справа):

При этом, должно соблюдаться одно крайне важное условие: реверсивное соединение пускателей должно полностью исключать возможность их одновременного срабатывания. Это неизбежно приведет к возникновению явления короткого замыкания.

Схема подключения реверсивного магнитного пускателя электродвигателей делится на два основных вида:

  1. Подключение к сети с напряжением 220 В,
  2. Запуск контактора на 380 В.

Далее рассмотрим подробнее каждый из вариантов, опираясь на уже упомянутые модели контакторов ПМЛ серии 1500.

Вид и функционирование реверсивной схемы на 220 В

На этой монтажной схеме можно видеть следующие основные элементы (обозначены цифрами):

  1. Блокирующие или блок-контакты,
  2. Катушки магнитных пускателей, рассчитанные на напряжение питания 220 В,
  3. Контакты тепловой или токовой защиты (релейные элементы),
  4. Силовые контакты пускателей.

Вид реверсивной схемы на 220 В

Кроме этого, буквенно-числовыми обозначениями выделяются:

  • МП-1, МП-2 – магнитные пускатели. Их границы на схеме выделены штриховыми линиями,
  • Стоп, Пуск – органы управления (сам блок выделен штриховой линией). Отдельно выделена лишь кнопка Стоп. Пусковые кнопки (прямой ход и реверс) обозначены, как две пары контактов, связанных с пускателями МП-1 и МП-2,
  • М – электродвигатель.

Принцип функционирования

Как можно видеть, на силовые контакты пускателей подводятся три разноименные фазы от сети 380 В. На приведенной схеме обозначения нет никакого, но в других случаях можно встретить символы А, В, С или L1, L2, L3. Организовывается блочная связка путем прямой перемычки центральных фаз реле, а также диагональных перемычек боковых фаз (условно 1 фаза МП-1 соединяется с 3 фазой МП-2 и т.д).

После этого провода идут на электродвигатель М. На этом промежутке, в разрыв цепи подключается тепловое реле. Оно осуществляет контроль двух из трех фаз, чтобы при перегрузке отключить питание двигателя.

Блок управления с пусковыми кнопками подключается от одной из центральных фаз в разрыв теплового реле, и нулевого провода (заземления) от катушек пускателей ПМЛ. Защита от одновременного включения пускателей организовывается путем перекрестного соединения контактов кнопок пуска/реверса с блокирующими контактами противоположного контактора.

При включении с блока управления прямого хода, замыкаются контакты на первый пускатель, который запускает двигатель. Одновременно, контакты второго пускателя размыкаются, а на катушку не поступает должное напряжение.

Включение реверса происходит после остановки двигателя кнопкой Стоп с последующим нажатием обратного хода. Таким образом, мы имеем на катушках измененные местами боковые фазы, что приводит к вращению двигателя в обратную сторону. Блокирование первого пускателя происходит по аналогичному принципу.

Вид и функционирование реверсивной схемы на 380 В

Здесь мы имеем, фактически, все те же элементы, что используются для ПМЛ на 220 В, но катушки пускателей рассчитаны на более высокое напряжение (имеют больше витков). Кроме того, отличием от предыдущей схемы является подключение блока управления не через одну, а через две фазы, не используя общий ноль.

Вид реверсивной схемы на 380 В

Где еще используются реверсивные пускатели?

Область применения двойных пусковых реле довольно широка. Она не ограничивается одними только электродвигателями. Необходимость изменения направления вращения или перемещения приводных механизмов может возникнуть также в других случаях.

К примеру, каждый человек имеет дома систему водоснабжения, отопления, где всегда есть место различной запорной арматуре. Для промышленных масштабов, при больших расходах, диаметрах трубопроводов, большой точности контроля расхода, обычными кранами не обойтись. Здесь используются задвижки электрической, а также механической системой управления рабочим органом. Вращение диска или перемещение задвижки происходит в разных направлениях, а значит, применение реверсивных схем пуска обосновано.

Не удаляясь далеко, можно найти реверсивные пускатели типа ПМЛ или другие в подъемной системе лифтов. Движение вверх-вниз происходит за счет изменения направления вращения главного барабана.

Изменение направления вращения двигателя, связанных с ним исполнительных механизмов – довольно востребованная процедура. При этом питание от трехфазной сети происходит через промежуточное коммутирующее реле – реверсивный магнитный пускатель типа ПМЛ 1500 или любой другой.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector